Suppr超能文献

一种多变量多重第三变量效应分析及其在探索肥胖方面种族和民族差异中的应用

A Multivariate Multiple Third-Variable Effect Analysis with an Application to Explore Racial and Ethnic Disparities in Obesity.

作者信息

Yu Qingzhao, Li Bin

机构信息

Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA.

Department of Experimental Statistics, Louisiana State University, 173 Martin D. Woodin Hall, Baton Rouge, LA 70803-5606, USA.

出版信息

J Appl Stat. 2021;48(4):750-764. doi: 10.1080/02664763.2020.1738359. Epub 2020 Mar 8.

Abstract

Third-Variable effect refers to the intervening effect from a third variable (called mediators or confounders) to the observed relationship between an exposure and an outcome. The general multiple third-variable effect analysis method (TVEA) allows consideration of multiple mediators/confounders (MC) simultaneously and the use of linear and non-linear predictive models for estimating MC effects. Previous studies have found that compared with non-Hispanic White population, Blacks and Hispanic Whites suffered disproportionally more with obesity and related chronic diseases. In this paper, we extend the general TVEA to deal with multivariate/multicategorical predictors and multivariate response variables. We designed algorithms and an R package for this extension and applied MMA on the NHANES data to identify MCs and quantify the indirect effect of each MC in explaining both racial and ethnic disparities in obesity and the body mass index (BMI) simultaneously. We considered a number of socio-demographic variables, individual factors, and environmental variables as potential MCs and found that some of the ethnic/racial differences in obesity and BMI were explained by the included variables.

摘要

第三变量效应是指由第三个变量(称为中介变量或混杂变量)对观察到的暴露与结果之间关系产生的干预效应。通用的多重第三变量效应分析方法(TVEA)允许同时考虑多个中介变量/混杂变量(MC),并使用线性和非线性预测模型来估计MC效应。先前的研究发现,与非西班牙裔白人相比,黑人和西班牙裔白人在肥胖及相关慢性病方面遭受的影响更大。在本文中,我们扩展了通用的TVEA,以处理多变量/多分类预测变量和多变量响应变量。我们为此扩展设计了算法和一个R包,并将MMA应用于美国国家健康与营养检查调查(NHANES)数据,以识别MC,并量化每个MC在同时解释肥胖和体重指数(BMI)方面的种族和民族差异中的间接效应。我们将一些社会人口统计学变量、个体因素和环境变量视为潜在的MC,并发现肥胖和BMI中的一些种族/民族差异可以由纳入的变量来解释。

相似文献

引用本文的文献

9
Third-variable effect analysis with multilevel additive models.多水平加法模型的第三变量效应分析。
PLoS One. 2020 Oct 23;15(10):e0241072. doi: 10.1371/journal.pone.0241072. eCollection 2020.

本文引用的文献

1
Using SAS Macros for Multiple Mediation Analysis in R.在R中使用SAS宏进行多重中介分析。
J Open Res Softw. 2020;8(1). doi: 10.5334/jors.277. Epub 2020 Oct 7.
9
Causal mediation analyses with rank preserving models.使用秩保持模型的因果中介分析。
Biometrics. 2007 Sep;63(3):926-34. doi: 10.1111/j.1541-0420.2007.00766.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验