Wang Yin, Xu Wei, Lai Pik-Yin, Tong Penger
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 USA.
Nonlinear Dyn. 2021;104(2):1613-1626. doi: 10.1007/s11071-021-06316-3. Epub 2021 Mar 6.
Inspired by the experimental and numerical findings, we study the dynamic instabilities of two coupled nonlinear delay differential equations that are used to describe the coherent oscillations between the top and bottom boundary layers in turbulent Rayleigh-Bénard convection. By introducing two sensitivity parameters for the instabilities of the top and bottom boundary layers, we find three different types of solutions, namely in-phase single-period oscillations, multi-period oscillations and chaos. The chaos solution contains rare but large amplitude fluctuations. The statistical properties of these fluctuations are consistent with those observed in the experiment for the massive eruption of thermal plumes, which causes random reversals of the large-scale circulation in turbulent Rayleigh-Bénard convection. Our study thus provides new insights into the origin of rare massive eruptions and sudden changes of large-scale flow pattern that are often observed in convection systems of geophysical and astrophysical scales.
受实验和数值结果的启发,我们研究了两个耦合的非线性延迟微分方程的动态不稳定性,这些方程用于描述湍流瑞利 - 贝纳德对流中顶部和底部边界层之间的相干振荡。通过引入顶部和底部边界层不稳定性的两个灵敏度参数,我们发现了三种不同类型的解,即同相单周期振荡、多周期振荡和混沌。混沌解包含罕见但幅度较大的波动。这些波动的统计特性与热羽流大规模喷发实验中观察到的特性一致,热羽流大规模喷发会导致湍流瑞利 - 贝纳德对流中大规模环流的随机反转。因此,我们的研究为地球物理和天体物理尺度对流系统中经常观察到的罕见大规模喷发和大规模流动模式突然变化的起源提供了新的见解。