Suppr超能文献

一种基于LASSO的风险预测模型,用于接受综合唾液腺保留螺旋断层放疗技术治疗的鼻咽癌患者放射性口干症的预测

A Risk Prediction Model by LASSO for Radiation-Induced Xerostomia in Patients With Nasopharyngeal Carcinoma Treated With Comprehensive Salivary Gland-Sparing Helical Tomotherapy Technique.

作者信息

Teng Feng, Fan Wenjun, Luo Yanrong, Xu Shouping, Gong Hanshun, Ge Ruigang, Zhang Xinxin, Wang Xiaoning, Ma Lin

机构信息

Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing, China.

Department of Radiation Oncology, Medical School of the Chinese People's Liberation Army (PLA), Beijing, China.

出版信息

Front Oncol. 2021 Feb 26;11:633556. doi: 10.3389/fonc.2021.633556. eCollection 2021.

Abstract

OBJECTIVE

This study aimed to develop a least absolute shrinkage and selection operator (LASSO)-based multivariable normal tissue complication probability (NTCP) model to predict radiation-induced xerostomia in patients with nasopharyngeal carcinoma (NPC) treated with comprehensive salivary gland-sparing helical tomotherapy technique.

METHODS AND MATERIALS

LASSO with the extended bootstrapping technique was used to build multivariable NTCP models to predict factors of patient-reported xerostomia relieved by 50% and 80% compared with the level at the end of radiation therapy within 1 year and 2 years, R50-1year and R80-2years, in 203 patients with NPC. The model assessment was based on 10-fold cross-validation and the area under the receiver operating characteristic curve (AUC).

RESULTS

The prediction model by LASSO with 10-fold cross-validation showed that radiation-induced xerostomia recovery could be predicted by prognostic factors of R50-1year (age, gender, T stage, UICC/AJCC stage, parotid Dmean, oral cavity Dmean, and treatment options) and R80-2years (age, gender, T stage, UICC/AJCC stage, oral cavity Dmean, N stage, and treatment options). These prediction models also demonstrated a good performance by the AUC.

CONCLUSION

The prediction models of R50-1year and R80-2years by LASSO with 10-fold cross-validation were recommended to validate the NTCP model before comprehensive salivary gland-sparing radiation therapy in patients with NPC.

摘要

目的

本研究旨在开发一种基于最小绝对收缩与选择算子(LASSO)的多变量正常组织并发症概率(NTCP)模型,以预测采用保留唾液腺的螺旋断层放射治疗技术治疗的鼻咽癌(NPC)患者放射性口干的发生情况。

方法与材料

采用带有扩展自抽样技术的LASSO构建多变量NTCP模型,以预测203例NPC患者在放疗结束后1年内和2年内,患者报告的口干缓解50%和80%的相关因素,即R50 - 1年和R80 - 2年。模型评估基于10折交叉验证和受试者操作特征曲线下面积(AUC)。

结果

采用10折交叉验证的LASSO预测模型显示,R50 - 1年(年龄、性别、T分期、UICC/AJCC分期、腮腺平均剂量、口腔平均剂量和治疗方案)和R80 - 2年(年龄、性别、T分期、UICC/AJCC分期、口腔平均剂量、N分期和治疗方案)的预后因素可预测放射性口干的恢复情况。这些预测模型的AUC也显示出良好的性能。

结论

建议采用10折交叉验证的LASSO建立的R50 - 1年和R80 - 2年预测模型,在NPC患者进行保留唾液腺的全面放射治疗前对NTCP模型进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9de9/7953987/29f43de82bc4/fonc-11-633556-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验