Herbig Charlotte, Zhang Canxun, Mujid Fauzia, Xie Saien, Pedramrazi Zahra, Park Jiwoong, Crommie Michael F
Department of Physics, University of California, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, United States.
Nano Lett. 2021 Mar 24;21(6):2363-2369. doi: 10.1021/acs.nanolett.0c04204. Epub 2021 Mar 15.
Lateral single-layer transition metal dichalcogenide (TMD) heterostructures are promising building blocks for future ultrathin devices. Recent advances in the growth of coherent heterostructures have improved the structural precision of lateral heterojunctions, but an understanding of the electronic effects of the chemical transition at the interface and associated strain is lacking. Here we present a scanning tunneling microscopy study of single-layer coherent TMD heterostructures with nearly uniform strain on each side of the heterojunction interface. We have characterized the local topography and electronic structure of single-layer WS/WSe heterojunctions exhibiting ultrasharp coherent interfaces. Uniform built-in strain on each side of the interface arising from lattice mismatch results in a reduction of the bandgap of WS. By mapping the tunneling differential conductance across the interface, we find type-II band alignment and an ultranarrow electronic transition region only ∼3 nm in width that arises from wave function mixing between the two materials.
横向单层过渡金属二硫族化合物(TMD)异质结构是未来超薄器件的理想构建模块。相干异质结构生长方面的最新进展提高了横向异质结的结构精度,但缺乏对界面处化学转变的电子效应及相关应变的理解。在此,我们展示了对单层相干TMD异质结构的扫描隧道显微镜研究,该异质结构在异质结界面两侧具有近乎均匀的应变。我们表征了呈现超尖锐相干界面的单层WS/WSe异质结的局部形貌和电子结构。由晶格失配引起的界面两侧均匀内应变导致WS的带隙减小。通过绘制界面上的隧穿微分电导,我们发现了II型能带排列以及一个宽度仅约3 nm的超窄电子跃迁区域,该区域源于两种材料之间的波函数混合。