Suppr超能文献

用于提高人机交互系统响应准确性的交互建模和分类方案。

Interaction modeling and classification scheme for augmenting the response accuracy of human-robot interaction systems.

机构信息

School of Computer Science, Baoji University of Arts and Sciences, Baoji, China.

Faculty of Computing, IBM CoE, and Earth Resources and Sustainability Center, Universiti Malaysia Pahang, Pahang, Malaysia.

出版信息

Work. 2021;68(3):903-912. doi: 10.3233/WOR-203424.

Abstract

BACKGROUND

Human-robot interaction (HRI) is becoming a current research field for providing granular real-time applications and services through physical observation. Robotic systems are designed to handle the roles of humans and assist them through intrinsic sensing and commutative interactions. These systems handle inputs from multiple sources, process them, and deliver reliable responses to the users without delay. Input analysis and processing is the prime concern for the robotic systems to understand and resolve the queries of the users.

OBJECTIVES

In this manuscript, the Interaction Modeling and Classification Scheme (IMCS) is introduced to improve the accuracy of HRI. This scheme consists of two phases, namely error classification and input mapping. In the error classification process, the input is analyzed for its events and conditional discrepancies to assign appropriate responses in the input mapping phase. The joint process is aided by a linear learning model to analyze the different conditions in the event and input detection.

RESULTS

The performance of the proposed scheme shows that it is capable of improving the interaction accuracy by reducing the ratio of errors and interaction response by leveraging the information extraction from the discrete and successive human inputs.

CONCLUSION

The fetched data are analyzed by classifying the errors at the initial stage to achieve reliable responses.

摘要

背景

人机交互(HRI)正成为当前的研究领域,通过物理观察提供粒度更细的实时应用和服务。机器人系统旨在承担人类的角色,并通过内在感知和交互来协助他们。这些系统处理来自多个源的输入,对其进行处理,并及时向用户提供可靠的响应。输入分析和处理是机器人系统理解和解决用户查询的主要关注点。

目的

在本文中,引入了交互建模和分类方案(IMCS)来提高 HRI 的准确性。该方案由两个阶段组成,即错误分类和输入映射。在错误分类过程中,分析输入的事件和条件差异,以便在输入映射阶段分配适当的响应。联合过程由线性学习模型辅助,以分析事件和输入检测中的不同条件。

结果

所提出方案的性能表明,它能够通过利用从离散和连续的人类输入中提取的信息,减少错误的比例和交互响应的时间,从而提高交互准确性。

结论

通过在初始阶段对错误进行分类来分析获取的数据,以实现可靠的响应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验