Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland.
Med Phys. 2021 Jun;48(6):3096-3108. doi: 10.1002/mp.14840. Epub 2021 May 14.
Theoretical studies have shown that dose-painting-by-numbers (DPBN) could lead to large gains in tumor control probability (TCP) compared to conventional dose distributions. However, these gains may vary considerably among patients due to (a) variations in the overall radiosensitivity of the tumor, (b) variations in the 3D distribution of intra-tumor radiosensitivity within the tumor in combination with patient anatomy, (c) uncertainties of the 3D radiosensitivity maps, (d) geometrical uncertainties, and (e) temporal changes in radiosensitivity. The goal of this study was to investigate how much of the theoretical gains of DPBN remain when accounting for these factors. DPBN was compared to both a homogeneous reference dose distribution and to nonselective dose escalation (NSDE), that uses the same dose constraints as DPBN, but does not require 3D radiosensitivity maps.
A fully automated DPBN treatment planning strategy was developed and implemented in our in-house developed treatment planning system (TPS) that is robust to uncertainties in radiosensitivity and patient positioning. The method optimized the expected TCP based on 3D maps of intra-tumor radiosensitivity, while accounting for normal tissue constraints, uncertainties in radiosensitivity, and setup uncertainties. Based on FDG-PETCT scans of 12 non-small cell lung cancer (NSCLC) patients, data of 324 virtual patients were created synthetically with large variations in the aforementioned parameters. DPBN was compared to both a uniform dose distribution of 60 Gy, and NSDE. In total, 360 DPBN and 24 NSDE treatment plans were optimized.
The average gain in TCP over all patients and radiosensitivity maps of DPBN was 0.54 ± 0.20 (range 0-0.97) compared to the 60 Gy uniform reference dose distribution, but only 0.03 ± 0.03 (range 0-0.22) compared to NSDE. The gains varied per patient depending on the radiosensitivity of the entire tumor and the 3D radiosensitivity maps. Uncertainty in radiosensitivity led to a considerable loss in TCP gain, which could be recovered almost completely by accounting for the uncertainty directly in the optimization.
Our results suggest that the gains of DPBN can be considerable compared to a 60 Gy uniform reference dose distribution, but small compared to NSDE for most patients. Using the robust DPBN treatment planning system developed in this work, the optimal DPBN treatment plan could be derived for any patient for whom 3D intra-tumor radiosensitivity maps are known, and can be used to select patients that might benefit from DPBN. NSDE could be an effective strategy to increase TCP without requiring biological information of the tumor.
理论研究表明,与传统剂量分布相比,剂量描绘(DPBN)可大大提高肿瘤控制概率(TCP)。然而,由于(a)肿瘤整体放射敏感性的变化,(b)肿瘤内肿瘤内放射敏感性的 3D 分布与患者解剖结构的变化,(c)3D 放射敏感性图的不确定性,(d)几何不确定性,以及(e)放射敏感性的时间变化,这些收益在患者之间可能有很大差异。本研究的目的是研究在考虑这些因素的情况下,DPBN 的理论收益中有多少仍然存在。DPBN 与均匀参考剂量分布和非选择性剂量递增(NSDE)进行了比较,NSDE 使用与 DPBN 相同的剂量限制,但不需要 3D 放射敏感性图。
开发并在我们内部开发的治疗计划系统(TPS)中实现了一种完全自动化的 DPBN 治疗计划策略,该策略对放射敏感性和患者定位的不确定性具有鲁棒性。该方法基于肿瘤内放射敏感性的 3D 图优化了预期的 TCP,同时考虑了正常组织限制、放射敏感性不确定性和设置不确定性。根据 12 例非小细胞肺癌(NSCLC)患者的 FDG-PETCT 扫描,使用上述参数的大量变化,合成了 324 个虚拟患者的数据。DPBN 与 60Gy 的均匀剂量分布和 NSDE 进行了比较。总共优化了 360 个 DPBN 和 24 个 NSDE 治疗计划。
与 60Gy 均匀参考剂量分布相比,所有患者和 DPBN 放射敏感性图的 TCP 平均增益为 0.54±0.20(范围 0-0.97),但与 NSDE 相比仅为 0.03±0.03(范围 0-0.22)。增益因患者而异,取决于整个肿瘤的放射敏感性和 3D 放射敏感性图。放射敏感性的不确定性导致 TCP 增益的大量损失,通过在优化中直接考虑不确定性,可以几乎完全恢复增益。
我们的结果表明,与 60Gy 均匀参考剂量分布相比,DPBN 的收益可能相当可观,但与大多数患者的 NSDE 相比,收益较小。使用本工作中开发的稳健 DPBN 治疗计划系统,可以为任何已知肿瘤内 3D 放射敏感性图的患者得出最佳 DPBN 治疗计划,并可用于选择可能从 DPBN 中受益的患者。NSDE 可能是一种无需肿瘤生物学信息即可增加 TCP 的有效策略。