Suppr超能文献

SCS-Net:用于视网膜血管分割的尺度和上下文敏感网络。

SCS-Net: A Scale and Context Sensitive Network for Retinal Vessel Segmentation.

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China, 518060.

School of Biomedical Engineering, Health Science Centers, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, AI Research Center for Medical Image Analysis and Diagnosis, Shenzhen, China, 518060.

出版信息

Med Image Anal. 2021 May;70:102025. doi: 10.1016/j.media.2021.102025. Epub 2021 Mar 4.

Abstract

Accurately segmenting retinal vessel from retinal images is essential for the detection and diagnosis of many eye diseases. However, it remains a challenging task due to (1) the large variations of scale in the retinal vessels and (2) the complicated anatomical context of retinal vessels, including complex vasculature and morphology, the low contrast between some vessels and the background, and the existence of exudates and hemorrhage. It is difficult for a model to capture representative and distinguishing features for retinal vessels under such large scale and semantics variations. Limited training data also make this task even harder. In order to comprehensively tackle these challenges, we propose a novel scale and context sensitive network (a.k.a., SCSNet) for retinal vessel segmentation. We first propose a scale-aware feature aggregation (SFA) module, aiming at dynamically adjusting the receptive fields to effectively extract multi-scale features. Then, an adaptive feature fusion (AFF) module is designed to guide efficient fusion between adjacent hierarchical features to capture more semantic information. Finally, a multi-level semantic supervision (MSS) module is employed to learn more distinctive semantic representation for refining the vessel maps. We conduct extensive experiments on the six mainstream retinal image databases (DRIVE, CHASEDB1, STARE, IOSTAR, HRF, and LES-AV). The experimental results demonstrate the effectiveness of the proposed SCS-Net, which is capable of achieving better segmentation performance than other state-of-the-art approaches, especially for the challenging cases with large scale variations and complex context environments.

摘要

准确地从视网膜图像中分割出视网膜血管对于许多眼部疾病的检测和诊断至关重要。然而,由于以下两个原因,这仍然是一项具有挑战性的任务:(1) 视网膜血管的尺度变化很大;(2) 视网膜血管的解剖结构复杂,包括复杂的血管结构和形态、一些血管与背景之间对比度低、以及渗出物和出血的存在。模型很难在如此大的尺度和语义变化下捕捉到具有代表性和区分性的视网膜血管特征。有限的训练数据也使得这项任务更加困难。为了全面应对这些挑战,我们提出了一种新的尺度和上下文敏感网络(即 SCSNet)用于视网膜血管分割。我们首先提出了一种尺度感知特征聚合(SFA)模块,旨在动态调整感受野,以有效地提取多尺度特征。然后,设计了一种自适应特征融合(AFF)模块,以指导相邻层次特征之间的有效融合,从而捕获更多的语义信息。最后,采用多级语义监督(MSS)模块来学习更具区分性的语义表示,以细化血管图。我们在六个主流视网膜图像数据库(DRIVE、CHASEDB1、STARE、IOSTAR、HRF 和 LES-AV)上进行了广泛的实验。实验结果表明,所提出的 SCS-Net 是有效的,它能够实现比其他最先进方法更好的分割性能,特别是对于具有大尺度变化和复杂上下文环境的挑战性情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验