National Pilot School of Software, Yunnan University, Kunming 650091, China.
National Pilot School of Software, Yunnan University, Kunming 650091, China; Kunming Key Laboratory of Data Science and Intelligent Computing, Kunming 650500, China.
Neural Netw. 2021 Jul;139:168-178. doi: 10.1016/j.neunet.2021.02.009. Epub 2021 Feb 24.
Although zero-shot learning (ZSL) has an inferential capability of recognizing new classes that have never been seen before, it always faces two fundamental challenges of the cross modality and cross-domain challenges. In order to alleviate these problems, we develop a generative network-based ZSL approach equipped with the proposed Cross Knowledge Learning (CKL) scheme and Taxonomy Regularization (TR). In our approach, the semantic features are taken as inputs, and the output is the synthesized visual features generated from the corresponding semantic features. CKL enables more relevant semantic features to be trained for semantic-to-visual feature embedding in ZSL, while Taxonomy Regularization (TR) significantly improves the intersections with unseen images with more generalized visual features generated from generative network. Extensive experiments on several benchmark datasets (i.e., AwA1, AwA2, CUB, NAB and aPY) show that our approach is superior to these state-of-the-art methods in terms of ZSL image classification and retrieval.
尽管零样本学习 (ZSL) 具有推断能力,可以识别以前从未见过的新类别,但它始终面临跨模态和跨领域挑战这两个基本挑战。为了缓解这些问题,我们开发了一种基于生成网络的 ZSL 方法,该方法配备了所提出的交叉知识学习 (CKL) 方案和分类学正则化 (TR)。在我们的方法中,语义特征被作为输入,输出是从相应的语义特征生成的合成视觉特征。CKL 使得语义到视觉特征嵌入中的语义特征可以得到更相关的训练,而分类学正则化 (TR) 则通过从生成网络生成的更通用的视觉特征显著提高了与看不见的图像的交集。在几个基准数据集(即 AwA1、AwA2、CUB、NAB 和 aPY)上的广泛实验表明,我们的方法在 ZSL 图像分类和检索方面优于这些最先进的方法。