Suppr超能文献

原位紫外光纤片剂溶出度测试中计算线性和二次多元模型的预测性能比较

Predictive Performance Comparison of Computed Linear and Quadratic Multivariate Models for In-Situ UV Fiber Optics Tablet Dissolution Testing.

作者信息

Sardhara Rusha, Chaturvedi Kaushalendra, Shah Harsh S, Vinjamuri Bhavani Prasad, Al-Achi Antoine, Morris Kenneth R, Haware Rahul V

机构信息

Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY-11201, USA.

Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY-11201, USA; J-Star Research Inc., 6 Cedar Brook Drive, Cranbury, NJ-08815, USA.

出版信息

Eur J Pharm Sci. 2021 Jun 1;161:105806. doi: 10.1016/j.ejps.2021.105806. Epub 2021 Mar 17.

Abstract

A present investigation aimed for multivariate modeling as a solution to resolve inaccuracy in dissolution testing experienced in the use of in-situ UV fiber optics dissolution systems (FODS) due to signal saturation problems. This problem is specifically encountered with high absorbance of moderate to high dose formulations. A high absorbance not only impede a real-time assessment but can also result in inaccurate dissolution profiles. Full spectra (F) and low absorbance regions (L) were employed to develop linear and quadratic (Q) partial least squares (PLS) and principal component regression (PCR) models. The conventional dissolution of atenolol, ibuprofen, and metformin HCl immediate-release (IR) tablets followed by HPLC analysis was used as a reference method to gauge multivariate models' performance in the 'built-in' Opt-Diss model. The linear multivariate modeling outputs resulted in accurate dissolution profiles, despite the potentially high UV signal saturation at later time points. Conversely, the 'built-in' Opt-Diss model and multivariate quadratic models failed to predict dissolution profiles accurately. The current studies show a good agreement in the predictions across both low absorbance region and full spectra, demonstrating the multivariate models' robust predictability. Overall, linear PLS and PCR models showed statistically similar results, which demonstrated their applicative flexibility for using FODS despite signal saturation and provides a unique alternative to traditional and labor-intensive UV or HPLC dissolution testing.

摘要

当前的一项研究旨在进行多变量建模,以解决在使用原位紫外光纤溶出系统(FODS)时由于信号饱和问题而在溶出度测试中出现的不准确问题。这个问题在中高剂量制剂的高吸光度情况下尤为突出。高吸光度不仅会妨碍实时评估,还可能导致溶出曲线不准确。利用全光谱(F)和低吸光度区域(L)来开发线性和二次(Q)偏最小二乘法(PLS)以及主成分回归(PCR)模型。将阿替洛尔、布洛芬和盐酸二甲双胍速释(IR)片的常规溶出后进行HPLC分析作为参考方法,以评估多变量模型在“内置”Opt-Diss模型中的性能。尽管在后期时间点可能存在较高的紫外信号饱和,但线性多变量建模输出仍能得出准确的溶出曲线。相反,“内置”Opt-Diss模型和多变量二次模型未能准确预测溶出曲线。当前研究表明,在低吸光度区域和全光谱的预测方面具有良好的一致性,证明了多变量模型强大的预测能力。总体而言,线性PLS和PCR模型显示出统计学上相似的结果,这表明尽管存在信号饱和,它们在使用FODS方面具有应用灵活性,并为传统且劳动密集型的紫外或HPLC溶出度测试提供了一种独特的替代方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验