Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA.
Department of Biomedical Engineering, University of Houston, Houston, Texas, USA.
J Immunother Cancer. 2021 Mar;9(3). doi: 10.1136/jitc-2020-001877.
Adoptive cell therapy based on the infusion of chimeric antigen receptor (CAR) T cells has shown remarkable efficacy for the treatment of hematologic malignancies. The primary mechanism of action of these infused T cells is the direct killing of tumor cells expressing the cognate antigen. However, understanding why only some T cells are capable of killing, and identifying mechanisms that can improve killing has remained elusive.
To identify molecular and cellular mechanisms that can improve T-cell killing, we utilized integrated high-throughput single-cell functional profiling by microscopy, followed by robotic retrieval and transcriptional profiling.
With the aid of mathematical modeling we demonstrate that non-killer CAR T cells comprise a heterogeneous population that arise from failure in each of the discrete steps leading to the killing. Differential transcriptional single-cell profiling of killers and non-killers identified CD137 as an inducible costimulatory molecule upregulated on killer T cells. Our single-cell profiling results directly demonstrate that inducible CD137 is feature of killer (and serial killer) T cells and this marks a different subset compared with the CD107a (degranulating) subset of CAR T cells. Ligation of the induced CD137 with CD137 ligand (CD137L) leads to younger CD19 CAR T cells with sustained killing and lower exhaustion. We genetically modified CAR T cells to co-express CD137L, in trans, and this lead to a profound improvement in anti-tumor efficacy in leukemia and refractory ovarian cancer models in mice.
Broadly, our results illustrate that while non-killer T cells are reflective of population heterogeneity, integrated single-cell profiling can enable identification of mechanisms that can enhance the function/proliferation of killer T cells leading to direct anti-tumor benefit.
基于嵌合抗原受体 (CAR) T 细胞输注的过继细胞疗法已显示出对治疗血液系统恶性肿瘤的显著疗效。这些输注的 T 细胞的主要作用机制是直接杀死表达同源抗原的肿瘤细胞。然而,理解为什么只有一些 T 细胞能够杀伤,以及确定可以提高杀伤能力的机制仍然难以捉摸。
为了确定可以提高 T 细胞杀伤能力的分子和细胞机制,我们利用显微镜的高通量单细胞功能分析,然后进行机器人检索和转录分析。
在数学建模的帮助下,我们证明非杀伤性 CAR T 细胞是一个异质性群体,它们源于导致杀伤的每个离散步骤的失败。对杀伤性和非杀伤性细胞进行的差异化转录单细胞分析确定 CD137 是一种诱导共刺激分子,在杀伤性 T 细胞中上调。我们的单细胞分析结果直接表明,诱导型 CD137 是杀伤性(和连续杀伤性)T 细胞的特征,与 CAR T 细胞的 CD107a(脱颗粒)亚群相比,这是一个不同的亚群。与 CD137 配体(CD137L)结合诱导型 CD137 可导致具有持续杀伤能力和较低衰竭的年轻 CD19 CAR T 细胞。我们通过基因修饰 CAR T 细胞共表达 CD137L,在转染过程中,这导致在白血病和难治性卵巢癌小鼠模型中的抗肿瘤疗效有了显著提高。
总体而言,我们的研究结果表明,虽然非杀伤性 T 细胞反映了群体异质性,但整合的单细胞分析可以确定增强杀伤性 T 细胞功能/增殖的机制,从而直接带来抗肿瘤益处。