Dipartimento di Matematica, Università di Genova, 16146 Genova, Italy.
Department of Mathematical Sciences, Bentley University, Waltham, MA 02452;
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2021244118.
In 2004, Pachter and Speyer introduced the higher dissimilarity maps for phylogenetic trees and asked two important questions about their relation to the tropical Grassmannian. Multiple authors, using independent methods, answered affirmatively the first of these questions, showing that dissimilarity vectors lie on the tropical Grassmannian, but the second question, whether the set of dissimilarity vectors forms a tropical subvariety, remained opened. We resolve this question by showing that the tropical balancing condition fails. However, by replacing the definition of the dissimilarity map with a weighted variant, we show that weighted dissimilarity vectors form a tropical subvariety of the tropical Grassmannian in exactly the way that Pachter and Speyer envisioned. Moreover, we provide a geometric interpretation in terms of configurations of points on rational normal curves and construct a finite tropical basis that yields an explicit characterization of weighted dissimilarity vectors.
2004 年,Pachter 和 Speyer 引入了用于系统发育树的更高相似度图,并提出了两个关于其与热带 Grassmannian 关系的重要问题。多位作者使用独立的方法对其中的第一个问题给出了肯定的回答,表明相似度向量位于热带 Grassmannian 上,但第二个问题,即相似度向量集是否构成热带子簇,仍然没有答案。我们通过证明热带平衡条件不成立来解决这个问题。然而,通过用加权变体替换相似度图的定义,我们表明加权相似度向量以 Pachter 和 Speyer 所设想的方式形成了热带 Grassmannian 的热带子簇。此外,我们还提供了一种基于有理正规曲线点配置的几何解释,并构建了一个有限的热带基,从而给出了加权相似度向量的显式特征。