Department of Pharmaceutical Sciences, Josai International University, Togane City, Chiba 283-8555, Japan.
Research Service, Louis Stokes Cleveland VAMC Cleveland, Ohio 44106, United States.
ACS Infect Dis. 2021 Apr 9;7(4):826-837. doi: 10.1021/acsinfecdis.0c00682. Epub 2021 Mar 16.
complex (Bcc) poses a serious health threat to people with cystic fibrosis or compromised immune systems. Infections often arise from Bcc strains, which are highly resistant to many classes of antibiotics, including β-lactams. β-Lactam resistance in Bcc is conferred largely via PenA-like β-lactamases. Avibactam was previously shown to be a potent inactivator of PenA1. Here, we examined the inactivation mechanism of PenA1, a class A serine carbapenemase from using β-lactamase inhibitors (β-lactam-, diazabicyclooctane-, and boronate-based) with diverse mechanisms of action. In whole cell based assays, avibactam, relebactam, enmetazobactam, and vaborbactam restored susceptibility to piperacillin against PenA1 expressed in . The rank order of potency of inactivation based on / or / values (range: 3.4 × 10 to 2 × 10 M s) against PenA1 was avibactam > enmetazobactam > tazobactam > relebactam > clavulanic acid > vaborbactam. The contribution of selected amino acids (S70, K73, S130, E166, N170, R220, K234, T237, and D276) in PenA1 toward inactivation was evaluated using site-directed mutagenesis. The S130A, R220A, and K234A variants of PenA1 were less susceptible to inactivation by avibactam. The R220A variant was purified and assessed via steady-state inhibition kinetics and found to possess increased values and decreased / or / values against all tested inhibitors compared to PenA1. Avibactam was the most affected by the alanine replacement at 220 with a nearly 400-fold decreased acylation rate. The X-ray crystal structure of the R220A variant was solved and revealed loss of the hydrogen bonding network between residues 237 and 276 leaving a void in the active site that was occupied instead by water molecules. Michaelis-Menten complexes were generated to elucidate the molecular contributions of the poorer inhibition profile of vaborbactam against PenA1 (/, 3.4 × 10 M s) and was compared to KPC-2, a class A carbapenemase that is robustly inhibited by vaborbactam. The active site of PenA1 is larger than that of KPC-2, which impacted the ability of vaborbactam to form favorable interactions, and as a result the carboxylate of vaborbactam was drawn toward K234/T235 in PenA1 displacing the boronic acid from approaching the nucleophilic S70. Moreover, in PenA1, the tyrosine at position 105 compared to tryptophan in KPC-2, was more flexible rotating more than 90°, and as a result PenA1's Y105 competed for binding with the cyclic boronate the thiophene moiety of vaborbactam, further precluding inhibition of PenA1 by vaborbactam. Given the 400-fold decreased / for the R220A variant compared to PenA1, acyl-enzyme complexes were generated via molecular modeling and compared to the PenA1-avibactam crystal structure. The water molecules occupying the active site of the R220A variant are unable to stabilize the T237 and D276 region of the active site altering the ability of avibactam to form favorable interactions compared to PenA1. The former likely impacts the ability of all inhibitors to effectively acylate this variant enzyme. Based on the summation of all evidence herein, the utility of these newer β-lactamase inhibitors (, relebactam, enmetazobactam, avibactam, and vaborbactam) in combination with a β-lactam against . producing PenA1 and the R220A variant is promising.
产酸克雷伯菌(Bcc)对囊性纤维化或免疫系统受损的人构成严重的健康威胁。感染通常来自于对许多类抗生素具有高度耐药性的 Bcc 株,包括β-内酰胺类抗生素。Bcc 中的β-内酰胺耐药性主要通过 PenA 样β-内酰胺酶来赋予。先前已经证明阿维巴坦是 PenA1 的有效失活剂。在这里,我们研究了来自 的 A 类丝氨酸碳青霉烯酶 PenA1 的失活机制,使用具有不同作用机制的β-内酰胺酶抑制剂(β-内酰胺、二氮杂二环辛烷和硼酸酯基)进行了全细胞测定。在基于细胞的测定中,阿维巴坦、雷利巴坦、恩美曲妥珠单抗和沃博巴坦恢复了对产酸克雷伯菌表达的哌拉西林的敏感性。基于 / 或 / 值(范围:3.4×10 到 2×10 M s)对 PenA1 的失活效力的排名顺序为阿维巴坦>恩美曲妥珠单抗>他唑巴坦>雷利巴坦>克拉维酸>沃博巴坦。通过定点突变评估了 PenA1 中选定氨基酸(S70、K73、S130、E166、N170、R220、K234、T237 和 D276)对失活的贡献。PenA1 的 S130A、R220A 和 K234A 变体对阿维巴坦的失活敏感性降低。R220A 变体被纯化并通过稳态抑制动力学进行评估,与 PenA1 相比,它对所有测试的抑制剂具有更高的 值和降低的 / 或 / 值。阿维巴坦受到 220 位丙氨酸取代的影响最大,酰化率几乎降低了 400 倍。R220A 变体的 X 射线晶体结构已解决,并显示出残基 237 和 276 之间氢键网络的丢失,导致活性位点出现空洞,而该空洞被水分子占据。迈克尔is-Menten 复合物的生成阐明了沃博巴坦对 PenA1(/,3.4×10 M s)较差的抑制谱的分子贡献,并与 KPC-2 进行了比较,KPC-2 是一种对沃博巴坦具有强大抑制作用的 A 类碳青霉烯酶。PenA1 的活性位点大于 KPC-2,这影响了沃博巴坦形成有利相互作用的能力,结果是沃博巴坦的羧酸盐被拉向 PenA1 的 K234/T235,从而将硼酸从接近亲核 S70 的位置上取代。此外,在 PenA1 中,与 KPC-2 中的色氨酸相比,位置 105 的酪氨酸更加灵活,旋转超过 90°,结果 PenA1 的 Y105 与沃博巴坦的环状硼酸竞争结合,进一步阻止了沃博巴坦对 PenA1 的抑制。鉴于与 PenA1 相比,R220A 变体的 / 降低了 400 倍,因此通过分子建模生成了酰化酶复合物,并与 PenA1-阿维巴坦晶体结构进行了比较。占据 R220A 变体活性位点的水分子无法稳定活性位点的 T237 和 D276 区域,改变了阿维巴坦与 PenA1 相比形成有利相互作用的能力。前者可能会影响所有抑制剂有效地酰化这种变体酶的能力。基于本文所有证据的总和,这些新型β-内酰胺酶抑制剂(阿维巴坦、雷利巴坦、恩美曲妥珠单抗、沃博巴坦)与β-内酰胺联合使用对产酸克雷伯菌(PenA1 和 R220A 变体)具有良好的应用前景。