Suppr超能文献

真菌中天冬氨酸家族代谢物对甲硫氨酸生物合成复杂调控网络的调控。

Modulation of the complex regulatory network for methionine biosynthesis in fungi.

机构信息

Depatment of Biology, Concordia University, Montreal, QC, Canada.

Medical School, Nantong University, Nangtong, Jiangsu, China.

出版信息

Genetics. 2021 Feb 9;217(2). doi: 10.1093/genetics/iyaa049.

Abstract

The assimilation of inorganic sulfate and the synthesis of the sulfur-containing amino acids methionine and cysteine is mediated by a multibranched biosynthetic pathway. We have investigated this circuitry in the fungal pathogen Candida albicans, which is phylogenetically intermediate between the filamentous fungi and Saccharomyces cerevisiae. In S. cerevisiae, this pathway is regulated by a collection of five transcription factors (Met4, Cbf1, Met28, and Met31/Met32), while in the filamentous fungi the pathway is controlled by a single Met4-like factor. We found that in C. albicans, the Met4 ortholog is also a core regulator of methionine biosynthesis, where it functions together with Cbf1. While C. albicans encodes this Met4 protein, a Met4 paralog designated Met28 (Orf19.7046), and a Met31 protein, deletion, and activation constructs suggest that of these proteins only Met4 is actually involved in the regulation of methionine biosynthesis. Both Met28 and Met31 are linked to other functions; Met28 appears essential, and Met32 appears implicated in the regulation of genes of central metabolism. Therefore, while S. cerevisiae and C. albicans share Cbf1 and Met4 as central elements of the methionine biosynthesis control, the other proteins that make up the circuit in S. cerevisiae are not members of the C. albicans control network, and so the S. cerevisiae circuit likely represents a recently evolved arrangement.

摘要

无机硫酸盐的同化和含硫氨基酸蛋氨酸和半胱氨酸的合成是由一个多分支的生物合成途径介导的。我们研究了真菌病原体白色念珠菌中的这个电路,它在丝状真菌和酿酒酵母之间处于进化中间位置。在酿酒酵母中,该途径受五个转录因子(Met4、Cbf1、Met28 和 Met31/Met32)的调控,而在丝状真菌中,该途径由一个单一的 Met4 样因子控制。我们发现,在白色念珠菌中,Met4 同源物也是蛋氨酸生物合成的核心调节剂,它与 Cbf1 一起发挥作用。虽然白色念珠菌编码这种 Met4 蛋白,但它还有一个 Met4 同源物,命名为 Met28(Orf19.7046)和一个 Met31 蛋白,缺失和激活构建体表明,这些蛋白中只有 Met4 实际上参与了蛋氨酸生物合成的调节。Met28 和 Met31 都与其他功能有关;Met28 似乎是必需的,而 Met32 似乎与中心代谢基因的调节有关。因此,虽然酿酒酵母和白色念珠菌共享 Cbf1 和 Met4 作为蛋氨酸生物合成控制的核心要素,但构成酿酒酵母电路的其他蛋白质不是白色念珠菌控制网络的成员,因此酿酒酵母的电路可能代表了最近进化的排列。

相似文献

5
Dissection of combinatorial control by the Met4 transcriptional complex.Met4 转录复合物对组合控制的剖析。
Mol Biol Cell. 2010 Feb 1;21(3):456-69. doi: 10.1091/mbc.e09-05-0420. Epub 2009 Nov 25.

引用本文的文献

2
Ctr9 promotes virulence of by regulating methionine metabolism.Ctr9 通过调控蛋氨酸代谢促进 的毒力。
Virulence. 2024 Dec;15(1):2405616. doi: 10.1080/21505594.2024.2405616. Epub 2024 Sep 24.

本文引用的文献

6
The MEME Suite.MEME 套件。
Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49. doi: 10.1093/nar/gkv416. Epub 2015 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验