Suppr超能文献

儿科门诊环境中未经证实的青霉素过敏标签:呼吁开展研究和质量改进举措。

Unconfirmed penicillin allergy labels in the paediatric outpatient setting: A call for research and quality improvement initiatives.

作者信息

Taylor Margaret, Anvari Sara, Palazzi Debra

机构信息

Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, United States.

Department of Pediatrics, Section of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, Texas, United States.

出版信息

J Paediatr Child Health. 2021 May;57(5):607-610. doi: 10.1111/jpc.15445. Epub 2021 Mar 16.

Abstract

Over the last 10 years, the electronic medical record has redefined medical documentation, and physicians rely on accurate records to make clinical decisions. Penicillin allergy labels (PALs) are important pieces of the medical history that guide physicians in selecting specific antibiotic classes for the treatment of infectious diseases. However, most children labelled as penicillin-allergic do not have an IgE-mediated (immediate) allergic reaction to penicillin or its derivatives. In the absence of confirmatory penicillin allergy testing or additional history, these children receive alternative, often broad-spectrum and second-line, antibiotics. Addressing unconfirmed PALs requires an understanding of how and why labels get added to the electronic medical record. This viewpoint highlights the knowledge gaps in paediatric outpatient penicillin allergy labelling and proposes an acronym ('LABEL') that primary care providers and antimicrobial stewards can utilise when designing initiatives to address unconfirmed PALs in the community.

摘要

在过去10年里,电子病历重新定义了医疗记录,医生依靠准确的记录来做出临床决策。青霉素过敏标签(PALs)是病史的重要组成部分,可指导医生选择特定抗生素类别来治疗传染病。然而,大多数被标记为对青霉素过敏的儿童对青霉素或其衍生物并无IgE介导的(速发型)过敏反应。在没有青霉素过敏确诊检测或额外病史的情况下,这些儿童会接受替代性抗生素治疗,这些抗生素通常为广谱和二线抗生素。解决未经证实的PALs问题需要了解标签是如何以及为何被添加到电子病历中的。本文观点强调了儿科门诊青霉素过敏标签方面的知识差距,并提出了一个首字母缩写词(“LABEL”),基层医疗服务提供者和抗菌药物管理者在设计解决社区中未经证实的PALs问题的举措时可以使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验