Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland.
Laboratory for Micro- and Nano-technology, Paul Scherrer Institute, 4132 Villigen, Switzerland.
J Phys Chem B. 2021 Apr 29;125(16):4204-4211. doi: 10.1021/acs.jpcb.1c01058. Epub 2021 Mar 16.
We report on monolayer-to-bilayer transitions in 2D metal-organic networks (MONs) from amphiphiles supported at the water-air interface. Functionalized calix[4]arenes are assembled through the coordination of selected transition metal ions to yield monomolecular 2D crystalline layers. In the presence of Ni(II) ions, interfacial self-assembly and coordination yields stable monolayers. Cu(II) promotes 2D coordination of a monolayer which is then diffusively reorganizing, nucleates, and grows a progressive amount of second layer islands. Atomic force microscopic data of these layers after transfer onto solid substrates reveal crystalline packing geometries with submolecular resolution as they are varying in function of the building blocks and the kinetics of the assembly. We assign this monolayer-to-bilayer transition to a diffusive reorganization of the initial monolayers owing to chemical vacancies of the predominant coordination motif formed by Cu ions. Our results introduce a new dimension into the controlled monolayer-to-multilayer architecturing of 2D metal-organic networks.
我们报告了在水-气界面上支撑的两亲体中二维金属有机网络(MON)从单层到双层的转变。通过选择的过渡金属离子与功能化杯[4]芳烃的配位,生成单分子二维结晶层。在 Ni(II)离子存在下,界面自组装和配位生成稳定的单层。Cu(II)促进单层的二维配位,然后扩散重组,成核并生长出越来越多的第二层岛。将这些层转移到固体基底上后的原子力显微镜数据显示,它们的晶体堆积几何形状具有亚分子分辨率,因为它们的功能取决于构建块和组装的动力学。我们将这种从单层到双层的转变归因于由 Cu 离子形成的主要配位模式的化学空位引起的初始单层的扩散重组。我们的结果为二维金属有机网络的可控单层到多层结构引入了一个新的维度。