Suppr超能文献

来自非掺杂有机热激活延迟荧光微晶的可调谐三线态介导的多色激光发射。

Tunable Triplet-Mediated Multicolor Lasing from Nondoped Organic TADF Microcrystals.

作者信息

Li Yuan, Wang Kai, Liao Qing, Fu Liyuan, Gu Chunling, Yu Zhenyi, Fu Hongbing

机构信息

Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.

Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Nano Lett. 2021 Apr 14;21(7):3287-3294. doi: 10.1021/acs.nanolett.1c00632. Epub 2021 Mar 16.

Abstract

Thermally activated delayed fluorescent (TADF) emitters have received great attention in organic light-emitting diodes and laser diodes because of high exciton utilization efficiency and low optical loss caused by triplets. However, the direct observation of lasing emission from nondoped TADF microcrystals has yet to be reported. Here, we demonstrated a three-color (green, yellow, and red) microlaser from three nondoped TADF microcrystals with well-controlled geometries. The temperature-dependent dynamic analyses testify that the regenerated singlets which originated from the reverse intersystem crossing process at room temperature are beneficial for population inversion and reduce triplet-absorption/annihilation optical loses, together resulting in thermally activated lasing actions. Thanks to single-crystalline structures of TADF emitters, the relationship between triplet-harvesting capability and the molecular structure was systematically investigated. The results not only offer rational design of pure TADF gain materials but also provide guidance for the high-performance electrically driven organic solid-state lasers and multicolor laser integration.

摘要

热激活延迟荧光(TADF)发光体因其三重态激子利用率高、光学损耗低而在有机发光二极管和激光二极管领域受到广泛关注。然而,尚未有关于非掺杂TADF微晶激光发射的直接观测报道。在此,我们展示了由三种具有良好几何结构控制的非掺杂TADF微晶构成的三色(绿色、黄色和红色)微激光。温度相关的动力学分析表明,室温下源于反向系间窜越过程的再生单重态有利于粒子数反转,并减少三重态吸收/湮灭光损耗,共同促成热激活激光作用。得益于TADF发光体的单晶结构,我们系统地研究了三重态俘获能力与分子结构之间的关系。这些结果不仅为纯TADF增益材料的合理设计提供了依据,也为高性能电驱动有机固态激光器和多色激光集成提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验