Suppr超能文献

miR-124 和小分子协同调控大鼠皮质反应性星形胶质细胞向神经元细胞的生成。

MiR-124 and Small Molecules Synergistically Regulate the Generation of Neuronal Cells from Rat Cortical Reactive Astrocytes.

机构信息

The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.

China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130031, Jilin, China.

出版信息

Mol Neurobiol. 2021 May;58(5):2447-2464. doi: 10.1007/s12035-021-02345-6. Epub 2021 Mar 16.

Abstract

Irreversible neuron loss caused by central nervous system injuries usually leads to persistent neurological dysfunction. Reactive astrocytes, because of their high proliferative capacity, proximity to neuronal lineage, and significant involvement in glial scarring, are ideal starting cells for neuronal regeneration. Having previously identified several small molecules as important regulators of astrocyte-to-neuron reprogramming, we established herein that miR-124, ruxolitinib, SB203580, and forskolin could co-regulate rat cortical reactive astrocyte-to-neuron conversion. The induced cells had reduced astroglial properties, displayed typical neuronal morphologies, and expressed neuronal markers, reflecting 25.9% of cholinergic neurons and 22.3% of glutamatergic neurons. Gene analysis revealed that induced neuron gene expression patterns were more similar to that of primary neurons than of initial reactive astrocytes. On the molecular level, miR-124-driven neuronal differentiation of reactive astrocytes was via targeting of the SOX9-NFIA-HES1 axis to inhibit HES1 expression. In conclusion, we present a novel approach to inducing endogenous rat cortical reactive astrocytes into neurons through co-regulation involving miR-124 and three small molecules. Thus, our research has potential implications for inhibiting glial scar formation and promoting neuronal regeneration after central nervous system injury or disease.

摘要

中枢神经系统损伤引起的不可逆转的神经元丢失通常导致持续的神经功能障碍。反应性星形胶质细胞由于其高增殖能力、靠近神经元谱系以及在神经胶质瘢痕形成中的重要参与,是神经元再生的理想起始细胞。我们之前已经确定了几种小分子是星形胶质细胞向神经元重编程的重要调节因子,在此我们建立了 miR-124、鲁索利替尼、SB203580 和 forskolin 可以共同调节大鼠皮质反应性星形胶质细胞向神经元的转化。诱导的细胞具有降低的星形胶质细胞特性,表现出典型的神经元形态,并表达神经元标志物,反映了 25.9%的胆碱能神经元和 22.3%的谷氨酸能神经元。基因分析显示,诱导神经元的基因表达模式与原代神经元更相似,而不是初始反应性星形胶质细胞。在分子水平上,miR-124 驱动反应性星形胶质细胞向神经元分化是通过靶向 SOX9-NFIA-HES1 轴来抑制 HES1 的表达。总之,我们通过涉及 miR-124 和三种小分子的共同调节,提出了一种诱导内源性大鼠皮质反应性星形胶质细胞向神经元分化的新方法。因此,我们的研究对于抑制中枢神经系统损伤或疾病后神经胶质瘢痕形成和促进神经元再生具有潜在意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验