Suppr超能文献

根据米兰模型的常见生化测量物测量不确定度的性能规范。

Performance specifications for measurement uncertainty of common biochemical measurands according to Milan models.

作者信息

Braga Federica, Panteghini Mauro

机构信息

Research Centre for Metrological Traceability in Laboratory Medicine (CIRME), University of Milan, Milan, Italy.

出版信息

Clin Chem Lab Med. 2021 Mar 16. doi: 10.1515/cclm-2021-0170.

Abstract

OBJECTIVES

Definition and fullfillment of analytical performance specifications (APS) for measurement uncertainty (MU) allow to make laboratory determinations clinically usable. The 2014 Milan Strategic Conference have proposed models to objectively derive APS based on: (a) the effect of analytical performance on clinical outcome; (b) biological variation components; and (3) the state of the art of the measurement, defined as the highest level of analytical performance technically achievable. Using these models appropriately, we present here a proposal for defining APS for standard MU for some common biochemical measurands.

METHODS

We allocated a group of 13 measurands selected among the most commonly laboratory requested tests to each of the three Milan models on the basis of their biological and clinical characteristics. Both minimum and desirable levels of quality of APS for standard MU of clinical samples were defined by using information obtained from available studies.

RESULTS

Blood total hemoglobin, plasma glucose, blood glycated hemoglobin, and serum 25-hydroxyvitamin D3 were allocated to the model 1 and the corresponding desirable APS were 2.80, 2.00, 3.00, and 10.0%, respectively. Plasma potassium, sodium, chloride, total calcium, alanine aminotransferase, creatinine, urea, and total bilirubin were allocated to the model 2 and the corresponding desirable APS were 1.96, 0.27, 0.49, 0.91, 4.65, 2.20, 7.05, and 10.5%, respectively. For C-reactive protein, allocated to the model 3, a desirable MU of 3.76% was defined.

CONCLUSIONS

APS for MU of clinical samples derived in this study are essential to objectively evaluate the reliability of results provided by medical laboratories.

摘要

目的

定义并实现测量不确定度(MU)的分析性能规范(APS)可使实验室检测结果具有临床实用性。2014年米兰战略会议提出了基于以下因素客观推导APS的模型:(a)分析性能对临床结果的影响;(b)生物学变异组分;以及(3)测量技术水平,定义为技术上可实现的最高分析性能水平。通过合理使用这些模型,我们在此提出了针对一些常见生化被测量物的标准MU定义APS的建议。

方法

根据其生物学和临床特征,我们将一组从最常要求的实验室检测项目中选出的13种被测量物分配到三个米兰模型中的每一个。通过使用从现有研究中获得的信息,定义了临床样本标准MU的APS的最低和理想质量水平。

结果

血液总血红蛋白、血浆葡萄糖、血液糖化血红蛋白和血清25-羟基维生素D3被分配到模型1,相应的理想APS分别为2.80%、2.00%、3.00%和10.0%。血浆钾、钠、氯、总钙、丙氨酸氨基转移酶、肌酐、尿素和总胆红素被分配到模型2,相应的理想APS分别为1.96%、0.27%、0.49%、0.91%、4.65%、2.20%、7.05%和10.5%。对于分配到模型3的C反应蛋白,定义了理想的MU为3.76%。

结论

本研究得出的临床样本MU的APS对于客观评估医学实验室提供结果的可靠性至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验