The First School of Medicine.
The College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
Medicine (Baltimore). 2021 Mar 19;100(11):e25081. doi: 10.1097/MD.0000000000025081.
This work aims to explore risk factors for ischemic stroke in young adults and analyze the Traditional Vascular Risk Factors Model based on age, hypertension, diabetes, smoking history, and drinking history. Further, the Lipid Metabolism Model was analyzed based on lipoprotein a [LP (a)], high-density lipoprotein (HDL), low-density lipoprotein (LDL), apolipoprotein AI (apo AI), apolipoprotein B (apo B), and the Early Renal Injury Model based on urinary microalbuminuria/creatinine ratio (UACR). Besides, we estimated glomerular filtration rate (eGFR), cystatin C (Cys-C), homocysteine (Hcy), β2 microglobulin (β2m), and validated their predictive efficacy and clinical value for the development of ischemic stroke in young adults.We selected and retrospectively analyzed the clinical data of 565 young inpatients admitted to Zhejiang Provincial Hospital of Chinese Medicine between 2010 and 2020, 187 of whom were young stroke patients. A single-factor analysis was used to analyze the risk factors for stroke in young people and developed a traditional vascular risk factors model, a lipid metabolism model, and an early kidney injury model based on backpropagation (BP) neural networks technology to predict early stroke occurrence. Moreover, the prediction performance by the area under the receiver operating characteristics (ROC) curve (AUC) was assessed to further understand the risk factors for stroke in young people and apply their predictive role in the clinical setting.Single-factor analysis showed that ischemic stroke in young adults was associated with hypertension, diabetes, smoking history, drinking history, LP(a), HDL, LDL, apo AI, apo B, eGFR, Cys-C, and β2m (P < .05). The BP neural networks technique was used to plot the ROC curves for the Traditional Vascular Risk Factors Model, the Lipid Metabolism Model, and the Early Kidney Injury Model in enrolled patients, and calculated AUC values of 0.7915, 0.8387, and 0.9803, respectively.The early kidney injury model precisely predicted the risk of ischemic stroke in young adults and exhibited a certain clinical value as a reference for morbidity assessment. Whereas the prediction performance of the Traditional Vascular Risk Factors Model and the Lipid Metabolism Model were inferior to that of the early kidney injury model.
本研究旨在探讨青年缺血性脑卒中的危险因素,并分析基于年龄、高血压、糖尿病、吸烟史和饮酒史的传统血管危险因素模型。此外,还分析了基于脂蛋白 a [LP(a)]、高密度脂蛋白(HDL)、低密度脂蛋白(LDL)、载脂蛋白 AI(apo AI)、载脂蛋白 B(apo B)的脂代谢模型,以及基于尿微量白蛋白/肌酐比值(UACR)的早期肾损伤模型。此外,我们还估算了肾小球滤过率(eGFR)、胱抑素 C(Cys-C)、同型半胱氨酸(Hcy)、β2 微球蛋白(β2m),并验证了它们对青年缺血性脑卒中发生的预测效能和临床价值。我们选择并回顾性分析了 2010 年至 2020 年期间浙江省中医院收治的 565 例青年住院患者的临床资料,其中 187 例为青年脑卒中患者。采用单因素分析方法分析青年脑卒中的危险因素,并基于反向传播(BP)神经网络技术建立传统血管危险因素模型、脂代谢模型和早期肾损伤模型,以预测早期脑卒中的发生。此外,通过评估受试者工作特征(ROC)曲线下面积(AUC)来评估预测性能,以进一步了解青年脑卒中的危险因素,并将其预测作用应用于临床。单因素分析显示,青年缺血性脑卒中与高血压、糖尿病、吸烟史、饮酒史、LP(a)、HDL、LDL、apo AI、apo B、eGFR、Cys-C 和β2m 有关(P<0.05)。我们采用 BP 神经网络技术对纳入患者的传统血管危险因素模型、脂代谢模型和早期肾损伤模型绘制 ROC 曲线,并计算 AUC 值分别为 0.7915、0.8387 和 0.9803。早期肾损伤模型能精确预测青年缺血性脑卒中的风险,具有一定的临床价值,可作为发病率评估的参考。而传统血管危险因素模型和脂代谢模型的预测性能均劣于早期肾损伤模型。