Suppr超能文献

基于特征模旋转的极化转换超表面设计及其在宽带和低雷达散射截面微型天线中的应用。

Polarization conversion metasurface design based on characteristic mode rotation and its application into wideband and miniature antennas with a low radar cross section.

作者信息

Shi Yan, Meng Hao Xuan, Wang Hua Jie

出版信息

Opt Express. 2021 Mar 1;29(5):6794-6809. doi: 10.1364/OE.416976.

Abstract

In this paper, a characteristic mode rotation (CMR) method has been proposed to design a compact metasurface antenna with a low radar cross section (RCS) in a wideband. In the proposed CMR method, the incident wave dependent complex characteristic currents corresponding to the dominant characteristic modes solved by the characteristic mode method (CMM) are calculated. With the direction of the superposition of the complex characteristic currents orthogonal to that of the incident electric field in the CMR method, the metasurface subarray with wideband polarization conversion characteristic is designed. By arranging the metasurface subarray in a rotation way, a metasurface array with a compact size of 1.28λ×1.28λ is designed for wideband RCS reduction. A miniature circle patch antenna is integrated with the metasurface array to achieve not only good radiation performance but also low observability for the in-band and the out-of-band of the antenna. Simulated and measured results demonstrate that the proposed miniature metasurface antenna designed by the CMR method has a good broadside radiation pattern, a maximal gain of 10.75 dB, and a -10 dB RCS reduction characteristic in the wide band of 6∼20.7 GHz with a fractional band of 110%.

摘要

本文提出了一种特征模旋转(CMR)方法,用于设计一种在宽带内具有低雷达散射截面(RCS)的紧凑型超表面天线。在所提出的CMR方法中,计算了由特征模方法(CMM)求解的与主导特征模相对应的与入射波相关的复特征电流。由于CMR方法中复特征电流叠加方向与入射电场方向正交,设计了具有宽带极化转换特性的超表面子阵列。通过将超表面子阵列以旋转方式排列,设计了尺寸紧凑为1.28λ×1.28λ的超表面阵列,用于宽带RCS缩减。将一个微型圆形贴片天线与超表面阵列集成,不仅实现了良好的辐射性能,而且使天线在带内和带外都具有低可观测性。仿真和测量结果表明,通过CMR方法设计的所提出的微型超表面天线具有良好的宽边辐射方向图,最大增益为10.75 dB,在6∼20.7 GHz宽带内具有-10 dB的RCS缩减特性,分数带宽为110%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验