Suppr超能文献

通过具有可解释性的深度神经网络进行散射的无位移相干成像。

Displacement-agnostic coherent imaging through scatter with an interpretable deep neural network.

出版信息

Opt Express. 2021 Jan 18;29(2):2244-2257. doi: 10.1364/OE.411291.

Abstract

Coherent imaging through scatter is a challenging task. Both model-based and data-driven approaches have been explored to solve the inverse scattering problem. In our previous work, we have shown that a deep learning approach can make high-quality and highly generalizable predictions through unseen diffusers. Here, we propose a new deep neural network model that is agnostic to a broader class of perturbations including scatterer change, displacements, and system defocus up to 10× depth of field. In addition, we develop a new analysis framework for interpreting the mechanism of our deep learning model and visualizing its generalizability based on an unsupervised dimension reduction technique. We show that our model can unmix the scattering-specific information and extract the object-specific information and achieve generalization under different scattering conditions. Our work paves the way to a robust and interpretable deep learning approach to imaging through scattering media.

摘要

相干成像是一项具有挑战性的任务。已经探索了基于模型和数据驱动的方法来解决逆散射问题。在我们之前的工作中,我们已经表明,深度学习方法可以通过看不见的扩散器进行高质量和高度可推广的预测。在这里,我们提出了一种新的深度神经网络模型,该模型对更广泛的一类扰动是不可知的,包括散射体变化、位移和系统散焦,最大可达 10 倍景深。此外,我们开发了一种新的分析框架,用于解释我们的深度学习模型的机制,并基于无监督降维技术可视化其可推广性。我们表明,我们的模型可以解混散射特定信息并提取物体特定信息,并在不同散射条件下实现泛化。我们的工作为通过散射介质进行稳健和可解释的深度学习成像方法铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验