Suppr超能文献

学习使用多模光纤进行成像和计算。

Learning to image and compute with multimode optical fibers.

作者信息

Rahmani Babak, Oguz Ilker, Tegin Ugur, Hsieh Jih-Liang, Psaltis Demetri, Moser Christophe

机构信息

Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Institute of Electrical and MicroEngineering, Lausanne, 1015, Switzerland.

Laboratory of Optics, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Institute of Electrical and MicroEngineering, Lausanne, 1015, Switzerland.

出版信息

Nanophotonics. 2022 Jan 21;11(6):1071-1082. doi: 10.1515/nanoph-2021-0601. eCollection 2022 Feb.

Abstract

Multimode fibers (MMF) were initially developed to transmit digital information encoded in the time domain. There were few attempts in the late 60s and 70s to transmit analog images through MMF. With the availability of digital spatial modulators, practical image transfer through MMFs has the potential to revolutionize medical endoscopy. Because of the fiber's ability to transmit multiple spatial modes of light simultaneously, MMFs could, in principle, replace the millimeters-thick bundles of fibers currently used in endoscopes with a single fiber, only a few hundred microns thick. That, in turn, could potentially open up new, less invasive forms of endoscopy to perform high-resolution imaging of tissues out of reach of current conventional endoscopes. Taking endoscopy by its general meaning as , we review in this paper novel ways of imaging and transmitting images using a machine learning approach. Additionally, we review recent work on using MMF to perform machine learning tasks. The advantages and disadvantages of using machine learning instead of conventional methods is also discussed. Methods of imaging in scattering media and particularly MMFs involves measuring the phase and amplitude of the electromagnetic wave, coming out of the MMF and using these measurements to infer the relationship between the input and the output of the MMF. Most notable techniques include analog phase conjugation [A. Yariv, "On transmission and recovery of three-dimensional image information in optical waveguides," , vol. 66, no. 4, pp. 301-306, 1976; A. Gover, C. Lee, and A. Yariv, "Direct transmission of pictorial information in multimode optical fibers," , vol. 66, no. 4, pp. 306-311, 1976; G. J. Dunning and R. Lind, "Demonstration of image transmission through fibers by optical phase conjugation," , vol. 7, no. 11, pp. 558-560, 1982; A. Friesem, U. Levy, and Y. Silberberg, "Parallel transmission of images through single optical fibers," , vol. 71, no. 2, pp. 208-221, 1983], digital phase conjugation [I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "Focusing and scanning light through a multimode optical fiber using digital phase conjugation," , vol. 20, no. 10, pp. 10583-10590, 2012; I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber," , vol. 4, no. 2, pp. 260-270, 2013] or the full-wave holographic transmission matrix method. The latter technique, which is the current gold standard, measures both the amplitude and phase of the output patterns corresponding to multiple input patterns to construct a matrix of complex numbers relaying the input to the output [Y. Choi, et al., "Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber," , vol. 109, no. 20, p. 203901, 2012; A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, "Real-time resilient focusing through a bending multimode fiber," , vol. 21, no. 10, pp. 12881-12887; R. Y. Gu, R. N. Mahalati, and J. M. Kahn, "Design of flexible multi-mode fiber endoscope," , vol. 23, no. 21, pp. 26905-26918, 2015; D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, "Digital confocal microscopy through a multimode fiber," , vol. 23, no. 18, pp. 23845-23858, 2015]. This matrix is then used for imaging of the inputs or projection of desired patterns. Other techniques rely on iteratively optimizing the pixel value of the input image to perform a particular task (such as focusing or displaying an image) [R. Di Leonardo and S. Bianchi, "Hologram transmission through multi-mode optical fibers," , vol. 19, no. 1, pp. 247-254, 2011; T. Čižmár and K. Dholakia, "Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics," , vol. 19, no. 20, pp. 18871-18884, 2011; T. Čižmár and K. Dholakia, "Exploiting multimode waveguides for pure fibre-based imaging," , vol. 3, no. 1, pp. 1-9, 2012; S. Bianchi and R. Di Leonardo, "A multi-mode fiber probe for holographic micromanipulation and microscopy," , vol. 12, no. 3, pp. 635-639, 2012; E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, "Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle," , vol. 38, no. 5, pp. 609-611, 2013].

摘要

多模光纤(MMF)最初是为传输在时域中编码的数字信息而开发的。在20世纪60年代末和70年代,很少有人尝试通过多模光纤传输模拟图像。随着数字空间调制器的出现,通过多模光纤进行实际的图像传输有可能彻底改变医学内窥镜检查。由于光纤能够同时传输多种空间模式的光,原则上,多模光纤可以用一根只有几百微米厚的光纤取代目前内窥镜中使用的几毫米厚的光纤束。这反过来又有可能开辟新的、侵入性较小的内窥镜检查形式,以对当前传统内窥镜无法触及的组织进行高分辨率成像。从内窥镜检查的一般意义出发,我们在本文中回顾了使用机器学习方法进行成像和传输图像的新方法。此外,我们还回顾了最近关于使用多模光纤执行机器学习任务的工作。还讨论了使用机器学习而不是传统方法的优缺点。在散射介质中,特别是在多模光纤中进行成像的方法涉及测量从多模光纤出射的电磁波的相位和幅度,并使用这些测量来推断多模光纤的输入和输出之间的关系。最著名的技术包括模拟相位共轭[A. Yariv,“光波导中三维图像信息的传输和恢复”,《应用光学》,第66卷,第4期,第301 - 306页,1976年;A. Gover、C. Lee和A. Yariv,“多模光纤中图像信息的直接传输”,《应用光学》,第66卷,第4期,第306 - 311页,1976年;G. J. Dunning和R. Lind,“通过光学相位共轭演示光纤中的图像传输”,《光学快报》,第7卷,第11期,第558 - 560页,1982年;A. Friesem、U. Levy和Y. Silberberg,“通过单根光纤并行传输图像”,《光学快报》,第71卷,第2期,第208 - 221页,1983年]、数字相位共轭[I. N. Papadopoulos、S. Farahi、C. Moser和D. Psaltis,“使用数字相位共轭通过多模光纤聚焦和扫描光”,《光学快报》,第20卷,第10期,第10583 - 10590页,2012年;I. N. Papadopoulos、S. Farahi、C. Moser和D. Psaltis,“基于通过多模光纤数字扫描的高分辨率无透镜内窥镜”,《生物医学光学快报》,第4卷,第2期,第260 - 270页,2013年]或全波全息传输矩阵方法。后一种技术是当前的金标准,它测量对应于多个输入模式的输出图案的幅度和相位,以构建一个复数矩阵,该矩阵将输入与输出相关联[Y. Choi等人,“使用单根多模光纤进行无扫描和宽视野内窥镜成像”,《光学快报》,第109卷,第20期,第203901页,2012年;A. M. Caravaca - Aguirre、E. Niv、D. B. Conkey和R. Piestun,“通过弯曲的多模光纤进行实时弹性聚焦”,《光学快报》,第21卷,第10期,第12881 - 12887页;R. Y. Gu、R. N. Mahalati和J. M. Kahn,“柔性多模光纤内窥镜的设计”,《光学快报》,第23卷,第21期,第26905 - 26918页,2015年;D. Loterie、S. Farahi、I. Papadopoulos、A. Goy、D. Psaltis和C. Moser,“通过多模光纤的数字共焦显微镜术”,《光学快报》,第23卷,第18期,第23845 - 23858页,2015年]。然后,该矩阵用于输入成像或所需图案的投影。其他技术依赖于迭代优化输入图像的像素值以执行特定任务(如聚焦或显示图像)[R. Di Leonardo和S. Bianchi,“通过多模光纤的全息图传输》,《光学快报》,第19卷,第期,第247 - 254页,2011年;T. Čižmár和K. Dholakia,“塑造通过多模光纤的光传输:复变换分析及其在生物光子学中的应用”,《光学快报》,第19卷,第20期,第18871 - 18884页,2011年;T. Čižmár和K. Dholakia,“利用多模波导进行基于纯光纤的成像”,《生物医学光学快报》,第3卷,第1期,第1 - 9页,2012年;S. Bianchi和R. Di Leonardo,“用于全息微操纵和显微镜术的多模光纤探头”,《光学快报》,第12卷,第3期,第635 - 页,2012年;E. R. Andresen、G. Bouwmans、S. Monneret和H. Rigneault,“迈向无远端光学元件的内窥镜:通过光纤束的视频速率扫描显微镜术”,《光学快报》,第38卷第5期,第609 - 611页,2013年]。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11501552/6b9b6d7a8b76/j_nanoph-2021-0601_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验