Kawaguchi Yu, Okuma Tomohiko, Kanno Kazutaka, Uchida Atsushi
Opt Express. 2021 Jan 18;29(2):2442-2457. doi: 10.1364/OE.411694.
We evaluate the (ɛ, τ) entropy of chaotic laser outputs generated by an optically injected semiconductor laser for physical random number generation. The vertical resolution ɛ and sampling time τ are numerically optimized by comparing the (ɛ, τ) entropy with the Kolmogorov-Sinai entropy, which is estimated from the Lyapunov exponents using linearized model equations. We then investigate the dependence of the (ɛ, τ) entropy on the optical injection strength of the laser system. In addition, we evaluate the (ɛ, τ) entropy from the experimentally obtained chaotic temporal waveforms in an optically injected semiconductor laser. Random bits with an entropy close to one bit per sampling point are extracted to satisfy the conditions of physical random number generation. We find that the extraction of the third-most significant bit from eight-bit experimental chaotic data results in an entropy of one bit per sample for certified physical random number generation.
我们评估了用于物理随机数生成的光注入半导体激光器产生的混沌激光输出的(ɛ, τ)熵。通过将(ɛ, τ)熵与从使用线性化模型方程的李雅普诺夫指数估计的柯尔莫哥洛夫-西奈熵进行比较,对垂直分辨率ɛ和采样时间τ进行了数值优化。然后,我们研究了(ɛ, τ)熵对激光系统光注入强度的依赖性。此外,我们从光注入半导体激光器中实验获得的混沌时间波形评估了(ɛ, τ)熵。提取熵接近每个采样点一位的随机比特以满足物理随机数生成的条件。我们发现,从八位实验混沌数据中提取第三高位有效位会产生每个样本一位的熵,以用于经过认证的物理随机数生成。