Teng Chu C, Yan Chao, Rousso Aric, Zhong Hongtao, Chen Timothy, Zhang Eric J, Ju Yiguang, Wysocki Gerard
Opt Express. 2021 Jan 18;29(2):2769-2779. doi: 10.1364/OE.413063.
Faraday rotation spectroscopy (FRS) employs the Faraday effect to detect Zeeman splitting in the presence of a magnetic field. In this article, we present system design and implementation of radical sensing in a photolysis reactor using FRS. High sensitivity (100 ppb) and time resolved in situ HO detection is enabled with a digitally balanced acquisition scheme. Specific advantages of employing FRS for sensing in such dynamic environments are examined and rigorously compared to the more established conventional laser absorption spectroscopy (LAS). Experimental results show that FRS enables HO detection when LAS is deficient, and FRS compares favorably in terms of precision when LAS is applicable. The immunity of FRS to spectral interferences such as absorption of hydrocarbons and other diamagnetic species absorption and optical fringing are highlighted in comparison to LAS.
法拉第旋转光谱法(FRS)利用法拉第效应在磁场存在的情况下检测塞曼分裂。在本文中,我们介绍了使用FRS在光解反应器中进行自由基传感的系统设计与实现。通过数字平衡采集方案实现了高灵敏度(100 ppb)和时间分辨原位羟基(HO)检测。研究了在这种动态环境中采用FRS进行传感的具体优势,并与更为成熟的传统激光吸收光谱法(LAS)进行了严格比较。实验结果表明,当LAS不足时,FRS能够实现羟基检测,而在LAS适用时,FRS在精度方面表现良好。与LAS相比,突出了FRS对诸如碳氢化合物吸收、其他抗磁性物质吸收和光学条纹等光谱干扰的免疫能力。