Suppr超能文献

高寒地区鹿鼠产热过程中的脂质氧化()。

Lipid oxidation during thermogenesis in high-altitude deer mice ().

机构信息

Department of Biology, McMaster University, Hamilton, Ontario, Canada.

Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2021 May 1;320(5):R735-R746. doi: 10.1152/ajpregu.00266.2020. Epub 2021 Mar 17.

Abstract

When at their maximum thermogenic capacity (cold-induced V̇o), small endotherms reach levels of aerobic metabolism as high, or even higher, than running V̇o. How these high rates of thermogenesis are supported by substrate oxidation is currently unclear. The appropriate utilization of metabolic fuels that could sustain thermogenesis over extended periods may be important for survival in cold environments, like high altitude. Previous studies show that high capacities for lipid use in high-altitude deer mice may have evolved in concert with greater thermogenic capacities. The purpose of this study was to determine how lipid utilization at both moderate and maximal thermogenic intensities may differ in high- and low-altitude deer mice, and strictly low-altitude white-footed mice. We also examined the phenotypic plasticity of lipid use after acclimation to cold hypoxia (CH), conditions simulating high altitude. We found that lipids were the primary fuel supporting both moderate and maximal rates of thermogenesis in both species of mice. Lipid oxidation increased threefold in mice from 30°C to 0°C, consistent with increases in oxidation of [C]palmitic acid. CH acclimation led to an increase in [C]palmitic acid oxidation at 30°C but did not affect total lipid oxidation. Lipid oxidation rates at cold-induced V̇o were two- to fourfold those at 0°C and increased further after CH acclimation, especially in high-altitude deer mice. These are the highest mass-specific lipid oxidation rates observed in any land mammal. Uncovering the mechanisms that allow for these high rates of oxidation will aid our understanding of the regulation of lipid metabolism.

摘要

当小型内温动物达到最大产热能力(冷诱导的 VO₂)时,其有氧代谢水平与跑步 VO₂一样高,甚至更高。这些高产热率是如何通过底物氧化来支持的,目前尚不清楚。适当利用能够在寒冷环境(如高海拔)中维持长时间产热的代谢燃料,可能对生存至关重要。先前的研究表明,高海拔鹿鼠的高脂质利用能力可能与更大的产热能力一起进化而来。本研究的目的是确定在中温和最大产热强度下,高海拔和低海拔鹿鼠以及严格的低海拔白足鼠的脂质利用可能有何不同,并研究冷缺氧(CH)适应后(模拟高海拔条件)脂质利用的表型可塑性。我们发现,脂质是支持两种小鼠产热的主要燃料。脂质氧化在 30°C 到 0°C 的范围内增加了三倍,与 [C]棕榈酸氧化的增加一致。CH 适应导致 30°C 时 [C]棕榈酸氧化增加,但不影响总脂质氧化。冷诱导 VO₂时的脂质氧化率是 0°C 时的两到四倍,CH 适应后进一步增加,尤其是在高海拔鹿鼠中。这是在任何陆地哺乳动物中观察到的最高比质量脂质氧化率。揭示允许这些高氧化率的机制将有助于我们理解脂质代谢的调节。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验