Lakkas Apostolos T, Sgouros Aristotelis P, Revelas Constantinos J, Theodorou Doros N
School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece.
Soft Matter. 2021 Apr 21;17(15):4077-4097. doi: 10.1039/d1sm00078k.
Polymer/matrix nanocomposites (PNCs) are materials with exceptional properties. They offer a plethora of promising applications in key industrial sectors. In most cases, it is preferable to disperse the nanoparticles (NPs) homogeneously across the matrix phase. However, under certain conditions NPs might lump together and lead to a composite material with undesirable properties. A common strategy to stabilize the NPs is to graft on their surface polymer chains of the same chemical constitution as the matrix chains. There are several unresolved issues concerning the optimal molar mass and areal density of grafted chains that would ensure best dispersion, given the nanoparticles and the polymer matrix. We propose a model for the prediction of key structural and thermodynamic properties of PNC and apply it to a single spherical silica (SiO2) nanoparticle or planar surface grafted with polystyrene chains embedded at low concentration in a matrix phase of the same chemical constitution. Our model is based on self-consistent field theory, formulated in terms of the Edwards diffusion equation. The properties of the PNC are explored across a broad parameter space, spanning the mushroom regime (low grafting densities, small NPs and chain lengths), the dense brush regime, and the crowding regime (large grafting densities, NP diameters, and chain lengths). We extract several key quantities regarding the distributions and the configurations of the polymer chains, such as the radial density profiles and their decomposition into contributions of adsorbed and free chains, the chains/area profiles, and the tendency of end segments to segregate at the interfaces. Based on our predictions concerning the brush thickness, we revisit the scaling behaviors proposed in the literature and we compare our findings with experiment, relevant simulations, and analytic models, such as Alexander's model for incompressible brushes.
聚合物/基体纳米复合材料(PNCs)是具有优异性能的材料。它们在关键工业领域有着大量有前景的应用。在大多数情况下,最好将纳米颗粒(NPs)均匀地分散在基体相中。然而,在某些条件下,纳米颗粒可能会聚集在一起,导致复合材料具有不理想的性能。稳定纳米颗粒的一种常见策略是在其表面接枝与基体链具有相同化学组成的聚合物链。对于给定的纳米颗粒和聚合物基体,关于接枝链的最佳摩尔质量和面密度,以确保最佳分散,仍有几个未解决的问题。我们提出了一个用于预测PNC关键结构和热力学性质的模型,并将其应用于单个球形二氧化硅(SiO₂)纳米颗粒或接枝有聚苯乙烯链的平面表面,这些聚苯乙烯链以低浓度嵌入具有相同化学组成的基体相中。我们的模型基于自洽场理论,用爱德华兹扩散方程来表述。在广泛的参数空间中探索了PNC的性质,涵盖蘑菇态(低接枝密度、小纳米颗粒和链长)、致密刷态和拥挤态(高接枝密度、纳米颗粒直径和链长)。我们提取了几个关于聚合物链分布和构型的关键量,如径向密度分布及其分解为吸附链和自由链的贡献、链/面积分布,以及末端链段在界面处的分离趋势。基于我们对刷厚度的预测,我们重新审视了文献中提出的标度行为,并将我们的发现与实验、相关模拟以及解析模型(如不可压缩刷的亚历山大模型)进行了比较。