Goldbourt Amir
School of Chemistry, Tel Aviv University, Tel Aviv, Israel.
Magn Reson Chem. 2021 Sep;59(9-10):908-919. doi: 10.1002/mrc.5150. Epub 2021 Apr 22.
Molecular structure determination is the basis for understanding chemical processes and the property of materials. The direct dependence of the magnetic dipolar interaction on the distance makes solid-state nuclear magnetic resonance (NMR) an excellent tool to study molecular structure when X-ray crystallography fails to provide atomic-resolution data. Although techniques to measure distances between pairs of isolated nuclear spin-1/2 pairs are routine and easy to implement using the rotational echo double resonance (REDOR) experiment (Gullion & Schaefer, 1989), the existence of a nucleus with a spin > 1/2, appearing in approximately 75% of the elements in the periodic table, poses a challenge due to difficulties stemming from the large nuclear quadrupolar coupling constant (QCC). This mini-review presents the existing solid-state magic-angle spinning NMR techniques aimed toward the efficient and accurate determination of internuclear distances between a spin-1/2 and a "quadrupolar" nucleus having a spin larger than one half. Analytical expressions are provided for the various recoupling curves stemming from different techniques, and a coherent nomenclature for these various techniques is suggested. Treatment of some special cases such as multiple spin effects and spins with close Larmor frequencies is also discussed. The most advanced methods can recouple spins with quadrupolar frequencies up to tens of megahertz and beyond, expanding the distance measurement capabilities of solid-state NMR to an increasingly growing number of applications and nuclear spin systems.
分子结构测定是理解化学过程和材料性质的基础。磁偶极相互作用对距离的直接依赖性使得当X射线晶体学无法提供原子分辨率数据时,固态核磁共振(NMR)成为研究分子结构的极佳工具。尽管使用旋转回波双共振(REDOR)实验(Gullion和Schaefer,1989)来测量成对的孤立核自旋1/2对之间的距离的技术是常规且易于实施的,但周期表中约75%的元素中存在自旋大于1/2的原子核,由于大的核四极耦合常数(QCC)带来的困难,这构成了一项挑战。本小型综述介绍了现有的固态魔角旋转核磁共振技术,旨在高效、准确地测定自旋1/2与自旋大于1/2的“四极”原子核之间的核间距离。给出了源自不同技术的各种再耦合曲线的解析表达式,并为这些不同技术建议了一个连贯的命名法。还讨论了一些特殊情况的处理,如多重自旋效应和拉莫尔频率相近的自旋。最先进的方法可以使自旋与高达数十兆赫兹及以上的四极频率再耦合,将固态核磁共振的距离测量能力扩展到越来越多的应用和核自旋系统。