Suppr超能文献

基于无冲击切换机制的康复机器人人体运动意图描述。

Human Motion Intent Description Based on Bumpless Switching Mechanism for Rehabilitation Robot.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:673-682. doi: 10.1109/TNSRE.2021.3066592. Epub 2021 Mar 30.

Abstract

This paper aims to improve the performance of an electromyography (EMG) decoder based on a switching mechanism in controlling a rehabilitation robot for assisting human-robot cooperation arm movements. For a complex arm movement, the major difficulty of the EMG decoder modeling is to decode EMG signals with high accuracy in real-time. Our recent study presented a switching mechanism for carving up a complex task into simple subtasks and trained different submodels with low nonlinearity. However, it was observed that a "bump" behavior of decoder output (i.e., the discontinuity) occurred during the switching between two submodels. The bumps might cause unexpected impacts on the affected limb and thus potentially injure patients. To improve this undesired transient behavior on decoder outputs, we attempt to maintain the continuity of the outputs during the switching between multiple submodels. A bumpless switching mechanism is proposed by parameterizing submodels with all shared states and applied in the construction of the EMG decoder. Numerical simulation and real-time experiments demonstrated that the bumpless decoder shows high estimation accuracy in both offline and online EMG decoding. Furthermore, the outputs achieved by the proposed bumpless decoder in both testing and verification phases are significantly smoother than the ones obtained by a multimodel decoder without a bumpless switching mechanism. Therefore, the bumpless switching approach can be used to provide a smooth and accurate motion intent prediction from multi-channel EMG signals. Indeed, the method can actually prevent participants from being exposed to the risk of unpredictable loads.

摘要

本文旨在提高基于切换机制的肌电 (EMG) 解码器在辅助人机协作手臂运动的康复机器人控制中的性能。对于复杂的手臂运动,EMG 解码器建模的主要难点是实时高精度地解码 EMG 信号。我们最近的研究提出了一种切换机制,用于将复杂任务分解为简单的子任务,并使用低非线性度训练不同的子模型。然而,我们观察到在两个子模型之间切换时解码器输出会出现“颠簸”行为(即不连续)。颠簸可能会对受影响的肢体造成意外冲击,从而可能伤害患者。为了改善解码器输出上这种不理想的瞬态行为,我们尝试在多个子模型之间切换时保持输出的连续性。提出了一种无颠簸切换机制,通过为所有共享状态参数化子模型,并将其应用于 EMG 解码器的构建中。数值模拟和实时实验表明,无颠簸解码器在离线和在线 EMG 解码中均具有很高的估计精度。此外,与没有无颠簸切换机制的多模型解码器相比,所提出的无颠簸解码器在测试和验证阶段的输出明显更加平滑。因此,无颠簸切换方法可用于从多通道 EMG 信号中提供平滑且准确的运动意图预测。实际上,该方法可以防止参与者面临不可预测负载的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验