Suppr超能文献

基于肌电图的三维手部运动意图预测用于人机信息传递。

EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.

机构信息

School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2021 Feb 12;21(4):1316. doi: 10.3390/s21041316.

Abstract

(1) Background: Three-dimensional (3-D) hand position is one of the kinematic parameters that can be inferred from Electromyography (EMG) signals. The inferred parameter is used as a communication channel in human-robot collaboration applications. Although its application from the perspective of rehabilitation and assistive technologies are widely studied, there are few papers on its application involving healthy subjects such as intelligent manufacturing and skill transfer. In this regard, for tasks associated with complex hand trajectories without the consideration of the degree of freedom (DOF), the prediction of 3-D hand position from EMG signal alone has not been addressed. (2) Objective: The primary aim of this study is to propose a model to predict human motor intention that can be used as information from human to robot. Therefore, the prediction of a 3-D hand position directly from the EMG signal for complex trajectories of hand movement, without the direct consideration of joint movements, is studied. In addition, the effects of slow and fast motions on the accuracy of the prediction model are analyzed. (3) Methods: This study used the EMG signal that is collected from the upper limb of healthy subjects, and the position signal of the hand while the subjects manipulate complex trajectories. We considered and analyzed two types of tasks with complex trajectories, each with quick and slow motions. A recurrent fuzzy neural network (RFNN) model was constructed to predict the 3-D position of the hand from the features of EMG signals alone. We used the Pearson correlation coefficient (CC) and normalized root mean square error (NRMSE) as performance metrics. (4) Results: We found that 3-D hand positions of the complex movement can be predicted with the mean performance of CC = 0.85 and NRMSE = 0.105. The 3-D hand position can be predicted well within a future time of 250 ms, from the EMG signal alone. Even though tasks performed under quick motion had a better prediction performance; the statistical difference in the accuracy of prediction between quick and slow motion was insignificant. Concerning the prediction model, we found that RFNN has a good performance in decoding for the time-varying system. (5) Conclusions: In this paper, irrespective of the speed of the motion, the 3-D hand position is predicted from the EMG signal alone. The proposed approach can be used in human-robot collaboration applications to enhance the natural interaction between a human and a robot.

摘要

(1)背景:三维(3-D)手部位置是可以从肌电图(EMG)信号推断出的运动学参数之一。推断出的参数被用作人机协作应用中的通信通道。尽管从康复和辅助技术的角度来看,它的应用得到了广泛的研究,但涉及健康受试者(如智能制造和技能转移)的应用却很少。在这方面,对于与自由度(DOF)无关的复杂手部轨迹相关的任务,尚未从 EMG 信号单独预测 3-D 手部位置。(2)目的:本研究的主要目的是提出一种可以用作人与机器人之间信息的模型,以预测人类的运动意图。因此,研究了直接从 EMG 信号预测手部复杂运动轨迹的 3-D 位置,而不直接考虑关节运动。此外,还分析了慢速和快速运动对预测模型准确性的影响。(3)方法:本研究使用从健康受试者上肢采集的 EMG 信号和受试者操作复杂轨迹时手部的位置信号。我们考虑并分析了两种具有复杂轨迹的任务,每种任务都有快速和慢速运动。构建了一个递归模糊神经网络(RFNN)模型,仅使用 EMG 信号的特征来预测手部的 3-D 位置。我们使用皮尔逊相关系数(CC)和归一化均方根误差(NRMSE)作为性能指标。(4)结果:我们发现,具有平均性能的 CC = 0.85 和 NRMSE = 0.105 可以预测复杂运动的 3-D 手部位置。可以从 EMG 信号单独预测未来 250ms 内的 3-D 手部位置。即使在快速运动下执行的任务具有更好的预测性能,但快速运动和慢速运动之间的预测准确性的统计差异并不显著。关于预测模型,我们发现 RFNN 在时变系统的解码方面具有良好的性能。(5)结论:在本文中,无论运动速度如何,都可以从 EMG 信号单独预测 3-D 手部位置。所提出的方法可用于人机协作应用中,以增强人与机器人之间的自然交互。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/421b/7918055/087bb52d8625/sensors-21-01316-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验