Suppr超能文献

基于强化学习的不确定非线性系统干扰抑制控制。

Reinforcement-Learning-Based Disturbance Rejection Control for Uncertain Nonlinear Systems.

出版信息

IEEE Trans Cybern. 2022 Sep;52(9):9621-9633. doi: 10.1109/TCYB.2021.3060736. Epub 2022 Aug 18.

Abstract

This article investigates the reinforcement-learning (RL)-based disturbance rejection control for uncertain nonlinear systems having nonsimple nominal models. An extended state observer (ESO) is first designed to estimate the system state and the total uncertainty, which represents the perturbation to the nominal system dynamics. Based on the output of the observer, the control compensates for the total uncertainty in real time, and simultaneously, online approximates the optimal policy for the compensated system using a simulation of experience-based RL technique. Rigorous theoretical analysis is given to show the practical convergence of the system state to the origin and the developed policy to the ideal optimal policy. It is worth mentioning that the widely used restrictive persistence of excitation (PE) condition is not required in the established framework. Simulation results are presented to illustrate the effectiveness of the proposed method.

摘要

本文研究了基于强化学习(RL)的不确定非线性系统的干扰抑制控制,这些系统具有非简单的标称模型。首先设计了一个扩展状态观测器(ESO)来估计系统状态和总不确定性,总不确定性表示对标称系统动力学的扰动。基于观测器的输出,控制实时补偿总不确定性,同时使用基于经验的 RL 技术的模拟在线逼近补偿系统的最优策略。给出了严格的理论分析,以证明系统状态向原点和所开发的策略向理想最优策略的实际收敛性。值得注意的是,在所建立的框架中不需要广泛使用的限制持续激励(PE)条件。给出了仿真结果,以说明所提出方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验