College of Mechanics and Materials, HoHai University, Nanjing, China.
College of Civil and Transportation Engineering, HoHai University, Nanjing, China.
PLoS One. 2021 Mar 17;16(3):e0247172. doi: 10.1371/journal.pone.0247172. eCollection 2021.
Mechanical responses of nanoporous aluminum samples under shock in different crystallographic orientations (<100>, <111>, <110>, <112> and <130>) are investigated by molecular dynamics simulations. The shape evolution of void during collapse is found to have no relationship with the shock orientation. Void collapse rate and dislocation activities at the void surface are found to strongly dependent on the shock orientation. For a relatively weaker shock, void collapses fastest when shocked along the <100> orientation; while for a relatively stronger shock, void collapses fastest in the <110> orientation. The dislocation nucleation position is strongly depended on the impacting crystallographic orientation. A theory based on resolved shear stress is used to explain which slip planes the earliest-appearing dislocations prefer to nucleate on under different shock orientations.
通过分子动力学模拟研究了不同晶向(<100>、<111>、<110>、<112>和<130>)下冲击作用下纳米多孔铝样品的力学响应。发现空洞在坍塌过程中的形状演化与冲击方向无关。空洞坍塌速率和空洞表面位错活动强烈依赖于冲击方向。对于相对较弱的冲击,沿<100>方向冲击时空洞坍塌最快;而对于相对较强的冲击,沿<110>方向冲击时空洞坍塌最快。位错形核位置强烈依赖于冲击的晶体取向。基于 resolved shear stress 的理论用于解释在不同冲击方向下最早出现的位错倾向于在哪个滑移面上形核。