Suppr超能文献

共轭低聚物中激子离域和结构动力学的模式特异性振动分析

Mode-Specific Vibrational Analysis of Exciton Delocalization and Structural Dynamics in Conjugated Oligomers.

作者信息

Kim Woojae, Tahara Shinya, Kuramochi Hikaru, Takeuchi Satoshi, Kim Taeyeon, Tahara Tahei, Kim Dongho

机构信息

Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.

Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.

出版信息

Angew Chem Int Ed Engl. 2021 Jul 26;60(31):16999-17008. doi: 10.1002/anie.202102168. Epub 2021 May 6.

Abstract

Exciton delocalization in organic semiconducting polymers, affected by structures at a molecular level, plays a crucial role in modulating relaxation pathways, such as charge generation and singlet fission, which can boost device efficiency. However, the structural diversity of polymers and broad signals from typical electronic spectroscopy have their limits when it comes to revealing the interplay between local structures and exciton delocalization. To tackle these problems, we apply femtosecond stimulated Raman spectroscopy in archetypical conjugated oligothiophenes with different chain lengths. We observed Raman frequency dispersions of symmetric bond stretching modes and mode-specific kinetics in the S Raman spectra, which underpins the subtle and complex interplay between exciton delocalization and bond length alternation along the conjugation coordinate. Our results provide a more general picture of exciton delocalization in the context of molecular structures for conjugated materials.

摘要

激子在有机半导体聚合物中的离域受分子水平结构的影响,在调节诸如电荷产生和单线态裂变等弛豫途径中起着关键作用,这些弛豫途径可提高器件效率。然而,聚合物的结构多样性以及典型电子光谱的宽泛信号在揭示局部结构与激子离域之间的相互作用方面存在局限性。为了解决这些问题,我们将飞秒受激拉曼光谱应用于具有不同链长的典型共轭低聚噻吩。我们在S拉曼光谱中观察到对称键拉伸模式的拉曼频率色散和模式特异性动力学,这支撑了激子离域与沿共轭坐标的键长交替之间微妙而复杂的相互作用。我们的结果在共轭材料分子结构的背景下提供了更全面的激子离域图景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验