Mandal Rituparno, Sollich Peter
Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany.
Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom.
J Phys Condens Matter. 2021 Apr 23;33(18). doi: 10.1088/1361-648X/abef9b.
We explore glassy dynamics of dense assemblies of soft particles that are self-propelled by active forces. These forces have a fixed amplitude and a propulsion direction that varies on a timescale, the persistence timescale. Numerical simulations of such active glasses are computationally challenging when the dynamics is governed by large persistence times. We describe in detail a recently proposed scheme that allows one to study directly the dynamics in the large persistence time limit, on timescales around and well above the persistence time. We discuss the idea behind the proposed scheme, which we call 'activity-driven dynamics', as well as its numerical implementation. We establish that our prescription faithfully reproduces all dynamical quantities in the appropriate limit→ ∞. We deploy the approach to explore in detail the statistics of Eshelby-like plastic events in the steady state dynamics of a dense and intermittent active glass.
我们研究了由主动力自驱动的软颗粒致密集合体的玻璃态动力学。这些力具有固定的幅度和在一个时间尺度(持久时间尺度)上变化的推进方向。当动力学由大的持久时间支配时,此类活性玻璃的数值模拟在计算上具有挑战性。我们详细描述了一种最近提出的方案,该方案允许人们在持久时间附近及远高于持久时间的时间尺度上,直接研究大持久时间极限下的动力学。我们讨论了所提出方案背后的思想,我们将其称为“活动驱动动力学”,以及它的数值实现。我们确定我们的方法在适当的极限→∞时忠实地再现了所有动力学量。我们运用该方法详细探索了致密且间歇性活性玻璃稳态动力学中类埃舍尔比塑性事件的统计特性。