Suppr超能文献

对10860个与SCN2A相关疾病个体的表型注释进行的计算分析。

Computational analysis of 10,860 phenotypic annotations in individuals with SCN2A-related disorders.

作者信息

Crawford Katherine, Xian Julie, Helbig Katherine L, Galer Peter D, Parthasarathy Shridhar, Lewis-Smith David, Kaufman Michael C, Fitch Eryn, Ganesan Shiva, O'Brien Margaret, Codoni Veronica, Ellis Colin A, Conway Laura J, Taylor Deanne, Krause Roland, Helbig Ingo

机构信息

Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Genetic Counseling, Arcadia University, Glenside, PA, USA.

出版信息

Genet Med. 2021 Jul;23(7):1263-1272. doi: 10.1038/s41436-021-01120-1. Epub 2021 Mar 17.

Abstract

PURPOSE

Pathogenic variants in SCN2A cause a wide range of neurodevelopmental phenotypes. Reports of genotype-phenotype correlations are often anecdotal, and the available phenotypic data have not been systematically analyzed.

METHODS

We extracted phenotypic information from primary descriptions of SCN2A-related disorders in the literature between 2001 and 2019, which we coded in Human Phenotype Ontology (HPO) terms. With higher-level phenotype terms inferred by the HPO structure, we assessed the frequencies of clinical features and investigated the association of these features with variant classes and locations within the Na1.2 protein.

RESULTS

We identified 413 unrelated individuals and derived a total of 10,860 HPO terms with 562 unique terms. Protein-truncating variants were associated with autism and behavioral abnormalities. Missense variants were associated with neonatal onset, epileptic spasms, and seizures, regardless of type. Phenotypic similarity was identified in 8/62 recurrent SCN2A variants. Three independent principal components accounted for 33% of the phenotypic variance, allowing for separation of gain-of-function versus loss-of-function variants with good performance.

CONCLUSION

Our work shows that translating clinical features into a computable format using a standardized language allows for quantitative phenotype analysis, mapping the phenotypic landscape of SCN2A-related disorders in unprecedented detail and revealing genotype-phenotype correlations along a multidimensional spectrum.

摘要

目的

SCN2A基因的致病性变异会导致多种神经发育表型。关于基因型-表型相关性的报道往往是轶事性的,且现有的表型数据尚未得到系统分析。

方法

我们从2001年至2019年文献中SCN2A相关疾病的原始描述中提取表型信息,并用人类表型本体论(HPO)术语进行编码。通过HPO结构推断出的更高级别的表型术语,我们评估了临床特征的频率,并研究了这些特征与Na1.2蛋白内变异类别和位置的关联。

结果

我们确定了413名无亲缘关系的个体,共得出10860个HPO术语,其中有562个独特术语。蛋白质截短变异与自闭症和行为异常有关。错义变异与新生儿发病、癫痫性痉挛和癫痫发作有关,与类型无关。在62个复发性SCN2A变异中的8个中发现了表型相似性。三个独立的主成分占表型变异的33%,能够很好地分离功能获得性与功能丧失性变异。

结论

我们的研究表明,使用标准化语言将临床特征转化为可计算的格式,能够进行定量表型分析,以前所未有的细节描绘SCN2A相关疾病的表型图谱,并揭示多维谱上的基因型-表型相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4863/8257493/639236adc745/41436_2021_1120_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验