Suppr超能文献

利用深度神经网络和人类数据,学习玩国际象棋变体“疯狂之家”并超越世界冠军水平。

Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data.

作者信息

Czech Johannes, Willig Moritz, Beyer Alena, Kersting Kristian, Fürnkranz Johannes

机构信息

Department of Computer Science, TU Darmstadt, Darmstadt, Germany.

Centre for Cognitive Science, TU Darmstadt, Darmstadt, Germany.

出版信息

Front Artif Intell. 2020 Apr 28;3:24. doi: 10.3389/frai.2020.00024. eCollection 2020.

Abstract

Deep neural networks have been successfully applied in learning the board games Go, chess, and shogi without prior knowledge by making use of reinforcement learning. Although starting from zero knowledge has been shown to yield impressive results, it is associated with high computationally costs especially for complex games. With this paper, we present which is a neural network based engine solely trained in supervised manner for the chess variant crazyhouse. Crazyhouse is a game with a higher branching factor than chess and there is only limited data of lower quality available compared to . Therefore, we focus on improving efficiency in multiple aspects while relying on low computational resources. These improvements include modifications in the neural network design and training configuration, the introduction of a data normalization step and a more sample efficient Monte-Carlo tree search which has a lower chance to blunder. After training on 569537 human games for 1.5 days we achieve a move prediction accuracy of 60.4%. During development, versions of played professional human players. Most notably, achieved a four to one win over 2017 crazyhouse world champion Justin Tan (aka ) who is more than 400 Elo higher rated compared to the average player in our training set. Furthermore, we test the playing strength of on CPU against all participants of the second Crazyhouse Computer Championships 2017, winning against twelve of the thirteen participants. Finally, for we continue training our model on generated engine games. In 10 long-time control matches playing wins three games and draws one out of 10 matches.

摘要

深度神经网络已通过强化学习在无需先验知识的情况下成功应用于学习棋盘游戏围棋、国际象棋和将棋。尽管从零知识开始已被证明能产生令人印象深刻的结果,但它伴随着高昂的计算成本,尤其是对于复杂游戏而言。在本文中,我们展示了一个基于神经网络的引擎,该引擎仅以监督方式针对国际象棋变体疯狂国际象棋进行训练。疯狂国际象棋是一个分支因子比国际象棋更高的游戏,与国际象棋相比,可用的低质量数据有限。因此,我们在依赖低计算资源的同时,专注于从多个方面提高效率。这些改进包括对神经网络设计和训练配置的修改、引入数据归一化步骤以及一种样本效率更高且犯错几率更低的蒙特卡洛树搜索。在对569537场人类游戏进行1.5天的训练后,我们实现了60.4%的着法预测准确率。在开发过程中,[具体版本]与专业人类玩家对弈。最值得注意的是,[具体版本]以四比一战胜了2017年疯狂国际象棋世界冠军贾斯汀·谭(又名[具体名字]),他的Elo评分比我们训练集中的普通玩家高出400多分。此外,我们在CPU上测试了[具体版本]对2017年第二届疯狂国际象棋计算机锦标赛所有参赛选手的棋力,战胜了十三名参赛选手中的十二名。最后,对于[具体版本],我们在生成的引擎游戏上继续训练我们的模型。在10场长时间的控制比赛中,[具体版本]进行对弈,赢得了三场比赛,在10场比赛中战平一场。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1332/7861260/0cae43173f2a/frai-03-00024-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验