Tang Rui, Zhou Shujie, Zhang Zhenyu, Zheng Rongkun, Huang Jun
Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
Adv Mater. 2021 Apr;33(17):e2005389. doi: 10.1002/adma.202005389. Epub 2021 Mar 17.
Photoelectrochemical (PEC) water oxidation based on semiconductor materials plays an important role in the production of clean fuel and value-added chemicals. Nanostructure-interface engineering has proven to be an effective way to construct highly efficient PEC water oxidation photoanodes with good light capture, carrier transport, and water oxidation kinetics. However, from theoretical and application perspectives, the relationship between the nanostructure and interface of photoanode materials and their PEC performance remains unclear. In this review, the PEC water oxidation reaction mechanism and evaluation criteria are briefly presented. The theoretical basis and research status of the nanostructure-interface engineering on constructing high-performance PEC water oxidation photoanodes are summarized and discussed. Finally, the current challenges and the future opportunities of nanostructure-interface engineering for the PEC reactions are pointed out.
基于半导体材料的光电化学(PEC)水氧化在清洁燃料和增值化学品的生产中起着重要作用。纳米结构界面工程已被证明是构建具有良好光捕获、载流子传输和水氧化动力学的高效PEC水氧化光阳极的有效方法。然而,从理论和应用角度来看,光阳极材料的纳米结构与界面及其PEC性能之间的关系仍不明确。在这篇综述中,简要介绍了PEC水氧化反应机理和评估标准。总结并讨论了纳米结构界面工程在构建高性能PEC水氧化光阳极方面的理论基础和研究现状。最后,指出了纳米结构界面工程在PEC反应方面当前面临的挑战和未来的机遇。