Kobielusz Marcin, Nitta Akio, Macyk Wojciech, Ohtani Bunsho
Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan.
J Phys Chem Lett. 2021 Mar 25;12(11):3019-3025. doi: 10.1021/acs.jpclett.1c00262. Epub 2021 Mar 18.
The diffuse reflectance spectroelectrochemistry (SE-DRS) and reversed double-beam photoacoustic spectroscopy (RDB-PAS) provide unique, complementary information on the density of electronic states (DOS) in the vicinity of the conduction band bottom. The measurements are performed under quite different conditions, representing the solid/liquid and solid/gas interfaces in SE-DRS and RDB-PAS, respectively. DOS profiles obtained from both types of measurements can be considered as unique "fingerprints" of the tested materials. The analysis of DOS profiles recorded for 16 different TiO samples confirms that both methods similarly describe the shapes of DOS profiles around the conduction band edges. The states characterized by energy higher than VBT (valence-band top) + can be considered as electronic states within the conduction band. Recognition of the potential of the conduction band bottom allows one to classify the electronic states as deep or shallow electron traps or conduction band states, which play different roles in photocatalysis. The comparative analysis shows that both methods provide very useful information which can be used in understanding and predicting the photo(electro)catalytic reactivity of semiconductors.
漫反射光谱电化学(SE-DRS)和反向双光束光声光谱(RDB-PAS)提供了关于导带底部附近电子态密度(DOS)的独特且互补的信息。测量是在截然不同的条件下进行的,分别代表了SE-DRS中的固/液界面和RDB-PAS中的固/气界面。从这两种测量类型获得的DOS分布可被视为被测材料独特的“指纹”。对16种不同TiO样品记录的DOS分布进行分析证实,两种方法同样地描述了导带边缘周围DOS分布的形状。能量高于价带顶(VBT)+ 的态可被视为导带内的电子态。识别导带底部的电位可使人们将电子态分类为深或浅电子陷阱或导带态,它们在光催化中发挥着不同的作用。对比分析表明,这两种方法都提供了非常有用的信息,可用于理解和预测半导体的光(电)催化反应活性。