Suppr超能文献

快速而敏感的宏基因组序列分类学分配。

Fast and sensitive taxonomic assignment to metagenomic contigs.

机构信息

Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

School of Biological Sciences, Seoul National University, Seoul, South Korea.

出版信息

Bioinformatics. 2021 Sep 29;37(18):3029-3031. doi: 10.1093/bioinformatics/btab184.

Abstract

SUMMARY

MMseqs2 taxonomy is a new tool to assign taxonomic labels to metagenomic contigs. It extracts all possible protein fragments from each contig, quickly retains those that can contribute to taxonomic annotation, assigns them with robust labels and determines the contig's taxonomic identity by weighted voting. Its fragment extraction step is suitable for the analysis of all domains of life. MMseqs2 taxonomy is 2-18× faster than state-of-the-art tools and also contains new modules for creating and manipulating taxonomic reference databases as well as reporting and visualizing taxonomic assignments.

AVAILABILITY AND IMPLEMENTATION

MMseqs2 taxonomy is part of the MMseqs2 free open-source software package available for Linux, macOS and Windows at https://mmseqs.com.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

MMseqs2 分类法是一种将分类标签分配给宏基因组序列的新工具。它从每个序列中提取所有可能的蛋白质片段,快速保留那些有助于分类注释的片段,用强大的标签对它们进行分类,并通过加权投票来确定序列的分类身份。其片段提取步骤适用于所有生命领域的分析。MMseqs2 分类法比现有最先进的工具快 2-18 倍,还包含用于创建和操作分类参考数据库以及报告和可视化分类分配的新模块。

可用性和实现

MMseqs2 分类法是 MMseqs2 免费开源软件包的一部分,可在 Linux、macOS 和 Windows 上从 https://mmseqs.com 获取。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/8479651/2e353c69a7b0/btab184f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验