Suppr超能文献

微波热点:基于量子态视角的热非平衡动力学

Microwave Hotspots: Thermal Nonequilibrium Dynamics from the Perspective of Quantum States.

作者信息

Hu Yongxin, Ma Dandan, Ma Jianyi

机构信息

Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan610065, P. R. China.

出版信息

J Phys Chem A. 2021 Apr 1;125(12):2690-2696. doi: 10.1021/acs.jpca.0c11594. Epub 2021 Mar 18.

Abstract

The observed microwave effects include thermal effect, superheating or hotspots, and selective heating. These phenomena are almost impossible in classical heating, and the existence of nonthermal effect is still a controversial topic. Hotspot effect is a phenomenon that is often observed in microwave-assisted reaction and is significantly different from the traditional heating reaction. We use the quantum-state specified master equation model of microwave-assisted reaction proposed in 2016 to study the possible mechanism of microwave hotspots. We divide the hotspots into space hotspots and intramolecular hotspots, which correspond to thermal conduction and luminous behavior, respectively. For the model system in the microwave field, the microwave hotspot cannot be generated at a very low temperature of 100 K, and it is possible to generate the microwave hotspot above 300 K. Moreover, the probability of generating the microwave hotspot at 500 K is about 75 times higher than that at 350 K. The appearance of this nonlinear phenomenon is related to the uneven distribution of temperature and microwave intensity in the macroscopic level and directly related to the nonequilibrium behavior caused by microwave absorption in the quantum-state level. It is suggested that microwave hotspots can be induced by heating the given regions in the reaction vessel in advance. In addition, the formation of intramolecular hotspots can also be induced by pre-exciting the local groups in specific molecules.

摘要

观察到的微波效应包括热效应、过热或热点以及选择性加热。这些现象在传统加热中几乎不可能出现,而非热效应的存在仍然是一个有争议的话题。热点效应是在微波辅助反应中经常观察到的一种现象,与传统加热反应有显著不同。我们使用2016年提出的微波辅助反应的量子态指定主方程模型来研究微波热点的可能机制。我们将热点分为空间热点和分子内热点,它们分别对应热传导和发光行为。对于微波场中的模型系统,在100K的极低温度下无法产生微波热点,而在300K以上有可能产生微波热点。此外,在500K时产生微波热点的概率比在350K时高约75倍。这种非线性现象的出现与宏观层面温度和微波强度的不均匀分布有关,并且与量子态层面微波吸收引起的非平衡行为直接相关。建议可以通过预先加热反应容器中的给定区域来诱导微波热点。此外,也可以通过预先激发特定分子中的局部基团来诱导分子内热点的形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验