Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya, Tochigi, Japan.
PLoS One. 2021 Mar 18;16(3):e0248470. doi: 10.1371/journal.pone.0248470. eCollection 2021.
In real world situations, decision makers prefer to have multiple optimal solutions before making a final decision. Aiming to help the decision makers even if they are non-experts in optimization algorithms, this study proposes a new and simple multimodal optimization (MMO) algorithm called the gravitational particle swarm algorithm (GPSA). Our GPSA is developed based on the concept of "particle clustering in the absence of clustering procedures". Specifically, it simply replaces the global feedback term in classical particle swarm optimization (PSO) with an inverse-square gravitational force term between the particles. The gravitational force mutually attracts and repels the particles, enabling them to autonomously and dynamically generate sub-swarms in the absence of algorithmic clustering procedures. Most of the sub-swarms gather at the nearby global optima, but a small number of particles reach the distant optima. The niching behavior of our GPSA was tested first on simple MMO problems, and then on twenty MMO benchmark functions. The performance indices (peak ratio and success rate) of our GPSA were compared with those of existing niching PSOs (ring-topology PSO and fitness Euclidean-distance ratio PSO). The basic performance of our GPSA was comparable to that of the existing methods. Furthermore, an improved GPSA with a dynamic parameter delivered significantly superior results to the existing methods on at least 60% of the tested benchmark functions.
在实际情况中,决策者更愿意在做出最终决策之前拥有多个最佳解决方案。本研究旨在帮助决策者,即使他们不是优化算法方面的专家,因此提出了一种新的简单多模态优化(MMO)算法,称为引力粒子群算法(GPSA)。我们的 GPSA 是基于“无聚类过程中的粒子聚类”的概念开发的。具体来说,它只是用粒子之间的平方反比引力代替经典粒子群优化(PSO)中的全局反馈项。引力相互吸引和排斥粒子,使它们能够在没有算法聚类过程的情况下自主和动态地生成子群。大多数子群聚集在附近的全局最优解,但少数粒子到达遥远的最优解。我们的 GPSA 的小生境行为首先在简单的 MMO 问题上进行了测试,然后在二十个 MMO 基准函数上进行了测试。我们的 GPSA 的性能指标(峰值比和成功率)与现有的小生境 PSO(环形拓扑 PSO 和适应度欧几里得距离比 PSO)进行了比较。我们的 GPSA 的基本性能与现有方法相当。此外,具有动态参数的改进 GPSA 在至少 60%的测试基准函数上的结果明显优于现有方法。