Suppr超能文献

基于姓名的英格兰住院患者种族增强,1999-2013 年。

Names-based ethnicity enhancement of hospital admissions in England, 1999-2013.

机构信息

Consumer Data Research Centre (CDRC), Department of Geography, University College London (UCL), Gower Street, London, WC1E 6BT, United Kingdom.

The Bartlett Centre for Advanced Spatial Analysis (CASA), Gower Street, UCL, London, WC1E 6BT, United Kingdom.

出版信息

Int J Med Inform. 2021 May;149:104437. doi: 10.1016/j.ijmedinf.2021.104437. Epub 2021 Mar 5.

Abstract

BACKGROUND

Accurate recording of ethnicity in electronic healthcare records is important for the monitoring of health inequalities. Yet until the late 1990s, ethnicity information was absent from more than half of records of patients who received inpatient care in England. In this study, we report on the usefulness of a names-based ethnicity classification, Ethnicity Estimator (EE), for addressing this gap in the hospital records.

MATERIALS AND METHODS

Data on inpatient hospital admissions were obtained from Hospital Episode Statistics (HES) between April 1999 and March 2014. The data were enhanced with ethnicity coding of participants' surnames using the EE software. Only data on the first episode for each patient each year were included.

RESULTS

A total of 111,231,653 patient-years were recorded between April 1999 and March 2014. The completeness of ethnicity records improved from 59.5 % in 1999 to 90.5 % in 2013 (financial year). Biggest improvement was seen in the White British group, which increased from 55.4 % in 1999 to 73.9 % in 2013. The correct prediction of NHS-reported ethnicity varied by ethnic group (2013 figures): White British (89.8 %), Pakistani (81.7 %), Indian (74.6 %), Chinese (72.9 %), Bangladeshi (63.4 %), Black African (57.3 %), White Other (50.5 %), White Irish (45.0 %). For other ethnic groups the prediction success was low to none. Prediction success was above 70 % in most areas outside London but fell below 40 % in parts of London.

CONCLUSION

Studies of ethnic inequalities in hospital inpatient care in England are limited by incomplete data on patient ethnicity collected in the 1990s and 2000s. The prediction success of a names-based ethnicity classification tool has been quantified in HES for the first time and the results can be used to inform decisions around the optimal analysis of ethnic groups using this data source.

摘要

背景

在电子医疗记录中准确记录种族对于监测健康不平等至关重要。然而,直到 20 世纪 90 年代末,英格兰接受住院治疗的患者记录中仍有一半以上没有种族信息。在这项研究中,我们报告了一种基于姓名的种族分类方法,即种族估计器(EE),用于解决医院记录中的这一空白。

材料和方法

从 1999 年 4 月至 2014 年 3 月的医院入院统计数据(HES)中获取住院患者数据。使用 EE 软件增强了参与者姓氏的种族编码。只包括每位患者每年的第一次入院数据。

结果

1999 年 4 月至 2014 年 3 月期间共记录了 111231653 患者年。种族记录的完整性从 1999 年的 59.5%提高到 2013 年(财政年度)的 90.5%。最大的改进出现在白种英国人组,从 1999 年的 55.4%增加到 2013 年的 73.9%。根据民族群体(2013 年数据),NHS 报告的种族的正确预测情况有所不同:白种英国人(89.8%)、巴基斯坦人(81.7%)、印度人(74.6%)、中国人(72.9%)、孟加拉国人(63.4%)、非裔黑人(57.3%)、其他白种人(50.5%)、爱尔兰白人(45.0%)。对于其他种族群体,预测成功率较低或根本没有。伦敦以外的大多数地区预测成功率都在 70%以上,但伦敦部分地区的预测成功率低于 40%。

结论

英格兰医院住院患者种族不平等的研究受到 20 世纪 90 年代和 21 世纪初收集的患者种族数据不完整的限制。首次在 HES 中量化了基于姓名的种族分类工具的预测成功率,结果可用于告知使用此数据源分析种族群体的最佳分析方法的决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验