Bradley Owen, Oitmaa Jaan, Sen Diptiman, Singh Rajiv R P
Department of Physics, University of California Davis, California 95616, USA.
School of Physics, The University of New South Wales, Sydney 2052, Australia.
Phys Rev E. 2021 Feb;103(2-1):022109. doi: 10.1103/PhysRevE.103.022109.
We study the thermodynamic behavior of modified spin-S Kitaev models introduced by Baskaran, Sen, and Shankar [Phys. Rev. B 78, 115116 (2008)PRBMDO1098-012110.1103/PhysRevB.78.115116]. These models have the property that for half-odd-integer spins their eigenstates map on to those of spin-1/2 Kitaev models, with well-known highly entangled quantum spin-liquid states and Majorana fermions. For integer spins, the Hamiltonian is made out of commuting local operators. Thus, the eigenstates can be chosen to be completely unentangled between different sites, though with a significant degeneracy for each eigenstate. For half-odd-integer spins, the thermodynamic properties can be related to the spin-1/2 Kitaev models apart from an additional degeneracy. Hence we focus here on the case of integer spins. We use transfer matrix methods, high-temperature expansions, and Monte Carlo simulations to study the thermodynamic properties of ferromagnetic and antiferromagnetic models with spin S=1 and S=2. Apart from large residual entropies, which all the models have, we find that they can have a variety of different behaviors. Transfer matrix calculations show that for the different models, the correlation lengths can be finite as T→0, become critical as T→0, or diverge exponentially as T→0. The Z_{2} flux variable associated with each hexagonal plaquette saturates at the value +1 as T→0 in all models except the S=1 antiferromagnet where the mean flux remains zero as T→0. We provide qualitative explanations for these results.
我们研究了由巴斯卡兰、森和尚卡尔引入的修正自旋 - S 基泰夫模型的热力学行为[《物理评论B》78, 115116 (2008)PRBMDO1098 - 012110.1103/PhysRevB.78.115116]。这些模型具有这样的性质:对于半奇数整数自旋,其本征态映射到自旋 - 1/2 基泰夫模型的本征态,具有众所周知的高度纠缠量子自旋液体态和马约拉纳费米子。对于整数自旋,哈密顿量由对易的局域算符构成。因此,本征态可以被选择为在不同格点之间完全不纠缠,尽管每个本征态存在显著的简并度。对于半奇数整数自旋,除了额外的简并度外,热力学性质可以与自旋 - 1/2 基泰夫模型相关。因此,我们在此关注整数自旋的情况。我们使用转移矩阵方法、高温展开和蒙特卡罗模拟来研究自旋 S = 1 和 S = 2 的铁磁和反铁磁模型的热力学性质。除了所有模型都具有的大的剩余熵外,我们发现它们可以有多种不同的行为。转移矩阵计算表明,对于不同的模型,关联长度在 T→0 时可以是有限的、在 T→0 时变为临界的或者在 T→0 时指数发散。与每个六边形格点相关的 Z₂ 磁通变量在 T→0 时在所有模型中都饱和到值 +1,但 S = 1 的反铁磁体除外,在该模型中平均磁通在 T→0 时保持为零。我们对这些结果提供了定性解释。