Suppr超能文献

外周拥挤的阳离子酞菁作为光动力疗法的高效光敏剂

Peripherally Crowded Cationic Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy.

作者信息

Halaskova Marie, Rahali Asma, Almeida-Marrero Verónica, Machacek Miloslav, Kucera Radim, Jamoussi Bassem, Torres Tomás, Novakova Veronika, de la Escosura Andrés, Zimcik Petr

机构信息

Faculty of Pharmacy in Hradec Kralove, Charles University, Ak. Heyrovskeho 1203, 50003 Hradec Kralove, Czech Republic.

Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain.

出版信息

ACS Med Chem Lett. 2021 Mar 1;12(3):502-507. doi: 10.1021/acsmedchemlett.1c00045. eCollection 2021 Mar 11.

Abstract

Photodynamic therapy is a treatment modality of cancer based on the production of cytotoxic species upon the light activation of photosensitizers. Zinc phthalocyanine photosensitizers bearing four or eight bulky 2,6-di(pyridin-3-yl)phenoxy substituents were synthesized, and pyridyl moieties were methylated. The quaternized derivatives did not aggregate at all in water and retained their good photophysical properties. High photodynamic activity of these phthalocyanines was demonstrated on HeLa, MCF-7, and EA.hy926 cells with a very low EC of 50 nM (for the MCF-7 cell line) upon light activation while maintaining low toxicity in the dark (TC ≈ 600 μM), giving thus good phototherapeutic indexes (TC/EC) above 1400. The compounds localized primarily in the lysosomes, leading to their rupture after light activation. This induced an apoptotic cell death pathway with secondary necrosis because of extensive and swift damage to the cells. This work demonstrates the importance of a bulky and rigid arrangement of peripheral substituents in the development of photosensitizers.

摘要

光动力疗法是一种基于光敏剂光激活后产生细胞毒性物质的癌症治疗方式。合成了带有四个或八个庞大的2,6-二(吡啶-3-基)苯氧基取代基的锌酞菁光敏剂,并对吡啶基部分进行了甲基化。季铵化衍生物在水中根本不聚集,并保留了良好的光物理性质。这些酞菁在HeLa、MCF-7和EA.hy926细胞上表现出高光动力活性,光照激活后其50 nM的极低半数有效浓度(针对MCF-7细胞系),同时在黑暗中保持低毒性(半数毒性浓度≈600 μM),因此具有高于1400的良好光治疗指数(半数毒性浓度/半数有效浓度)。这些化合物主要定位于溶酶体,光照激活后导致溶酶体破裂。这引发了细胞凋亡死亡途径并继发坏死,因为对细胞造成了广泛而迅速的损伤。这项工作证明了外围取代基的庞大且刚性排列在光敏剂开发中的重要性。

相似文献

1
Peripherally Crowded Cationic Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy.
ACS Med Chem Lett. 2021 Mar 1;12(3):502-507. doi: 10.1021/acsmedchemlett.1c00045. eCollection 2021 Mar 11.
4
Amphiphilic Cationic Phthalocyanines for Photodynamic Therapy of Cancer.
Chempluschem. 2022 Jul 26;87(9):e202200133. doi: 10.1002/cplu.202200133.
8
Tetra(3,4-pyrido)porphyrazines Caught in the Cationic Cage: Toward Nanomolar Active Photosensitizers.
J Med Chem. 2016 Oct 27;59(20):9443-9456. doi: 10.1021/acs.jmedchem.6b01140. Epub 2016 Oct 5.
10
Subphthalocyanines as Efficient Photosensitizers with Nanomolar Photodynamic Activity against Cancer Cells.
J Med Chem. 2021 Dec 9;64(23):17436-17447. doi: 10.1021/acs.jmedchem.1c01584. Epub 2021 Nov 23.

引用本文的文献

1
Light-activated antimicrobial coatings: the great potential of organic photosensitizers.
RSC Adv. 2025 Mar 13;15(10):7905-7925. doi: 10.1039/d5ra00272a. eCollection 2025 Mar 6.
2
"Alkyl-Substituted Phenoxy" Spacer Strategy: Antiaggregated and Highly Soluble Zinc Phthalocyanines for Color Films.
ACS Omega. 2024 Dec 12;9(51):50774-50785. doi: 10.1021/acsomega.4c08931. eCollection 2024 Dec 24.
3
Elucidating the Supramolecular Interaction of Positively Supercharged Fluorescent Protein with Anionic Phthalocyanines.
Adv Biol (Weinh). 2025 May;9(5):e2400308. doi: 10.1002/adbi.202400308. Epub 2024 Oct 16.
6
Water-soluble phthalocyanine photosensitizers for photodynamic therapy.
Turk J Chem. 2023 Sep 26;47(5):837-863. doi: 10.55730/1300-0527.3583. eCollection 2023.
8
The Surprisingly Positive Effect of Zinc-Phthalocyanines With High Photodynamic Therapy Efficacy of Melanoma Cancer.
Front Chem. 2022 Mar 14;10:825716. doi: 10.3389/fchem.2022.825716. eCollection 2022.
9
Phthalocyanine and Its Formulations: A Promising Photosensitizer for Cervical Cancer Phototherapy.
Pharmaceutics. 2021 Dec 2;13(12):2057. doi: 10.3390/pharmaceutics13122057.

本文引用的文献

1
Synergy of Electrostatic and π-π Interactions in the Realization of Nanoscale Artificial Photosynthetic Model Systems.
Angew Chem Int Ed Engl. 2020 Oct 12;59(42):18786-18794. doi: 10.1002/anie.202006014. Epub 2020 Sep 2.
2
Cationic Versus Anionic Phthalocyanines for Photodynamic Therapy: What a Difference the Charge Makes.
J Med Chem. 2020 Jul 23;63(14):7616-7632. doi: 10.1021/acs.jmedchem.0c00481. Epub 2020 Jul 14.
3
The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer.
Chem Soc Rev. 2020 Feb 21;49(4):1041-1056. doi: 10.1039/c9cs00129h. Epub 2019 Dec 17.
4
Photodynamic Therapy for Cancer: What's Past is Prologue.
Photochem Photobiol. 2020 May;96(3):506-516. doi: 10.1111/php.13190. Epub 2020 Jan 7.
6
Phthalocyanine-Virus Nanofibers as Heterogeneous Catalysts for Continuous-Flow Photo-Oxidation Processes.
Adv Mater. 2019 Sep;31(39):e1902582. doi: 10.1002/adma.201902582. Epub 2019 Aug 8.
7
Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis.
J Photochem Photobiol B. 2019 Feb;191:128-134. doi: 10.1016/j.jphotobiol.2018.12.020. Epub 2018 Dec 27.
8
A real-time, bioluminescent annexin V assay for the assessment of apoptosis.
Apoptosis. 2019 Feb;24(1-2):184-197. doi: 10.1007/s10495-018-1502-7.
9
Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management.
Chem Soc Rev. 2018 Oct 1;47(19):7369-7400. doi: 10.1039/c7cs00554g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验