Suppr超能文献

利用压力测量技术实现高度自动化车辆中的驾驶员姿势监测

Driver posture monitoring in highly automated vehicles using pressure measurement.

机构信息

Université de Lyon, Lyon, France.

Université Claude Bernard Lyon 1, Villeurbanne, France.

出版信息

Traffic Inj Prev. 2021;22(4):278-283. doi: 10.1080/15389588.2021.1892087. Epub 2021 Mar 19.

Abstract

OBJECTIVE

Driver posture monitoring is useful for evaluating the readiness to take over from highly automated driving systems as well as for designing intelligent restraint systems to reduce injury. The aim of this study was to develop a real-time and robust driver posture monitoring system using pressure measurement.

METHODS

Driver motion and pressure measurement were collected from 23 differently sized participants performing 42 driving and non-driving activities. Nine typical driver postures were identified by analyzing trunk and feet positions in 3 D space for classification. One deep learning classifier and two Random Forest classifiers were trained respectively on pressure distribution, absolute and relative pressure features extracted from pressure measurement. Leave-One-Out cross-validation was performed to evaluate the performance of the classifiers.

RESULTS

Without considering feet positions, all the classifiers could provide reliable recognition of the normal trunk position for standard driving with an accuracy around 98%. With help of a reference sitting position, the best performance was achieved by Random Forest classifier trained on the relative pressure features with an average classification accuracy of 80.5% across 9 typical postures and 23 drivers. The main errors were related to the recognition of feet positions when applying braking and relaxing both feet on the floor.

CONCLUSIONS

Pressure measurement could be a good alternative or complementary to camera based driver postural monitoring system. Results show that all classifiers proposed in the work could predict the trunk position for standard driving. With help of an initial posture, Random Forest classifier with relative pressure features could classify trunk positions with high accuracy. However, further effort is needed to improve the accuracy of feet position prediction especially by adding more foot related task data.

摘要

目的

驾驶员姿势监测对于评估从高度自动化驾驶系统接管的准备情况以及设计智能约束系统以减少伤害非常有用。本研究的目的是使用压力测量开发一种实时和稳健的驾驶员姿势监测系统。

方法

从 23 名不同尺寸的参与者中收集驾驶员运动和压力测量数据,他们执行了 42 项驾驶和非驾驶活动。通过分析 3D 空间中的躯干和脚部位置,确定了 9 种典型的驾驶员姿势,以便进行分类。分别使用压力分布、从压力测量中提取的绝对压力和相对压力特征,训练了一个深度学习分类器和两个随机森林分类器。采用留一交叉验证法评估分类器的性能。

结果

不考虑脚部位置,所有分类器都可以可靠地识别标准驾驶中的正常躯干位置,准确率约为 98%。借助参考坐姿,基于相对压力特征训练的随机森林分类器的性能最佳,在 9 种典型姿势和 23 名驾驶员中平均分类准确率为 80.5%。主要错误与应用制动和同时放松双脚在地板上时脚部位置的识别有关。

结论

压力测量可以作为基于摄像头的驾驶员姿势监测系统的良好替代或补充。结果表明,工作中提出的所有分类器都可以预测标准驾驶中的躯干位置。借助初始姿势,使用相对压力特征的随机森林分类器可以高精度地分类躯干位置。然而,需要进一步努力提高脚部位置预测的准确性,特别是通过添加更多与脚部相关的任务数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验