Department of Psychology, University of Münster.
IPN - Leibniz Institute for Science and Mathematics Education and Centre for International Student Assessment.
Multivariate Behav Res. 2022 Jul-Aug;57(4):581-602. doi: 10.1080/00273171.2021.1884522. Epub 2021 Mar 19.
Response Surface Analysis (RSA) is gaining popularity in psychological research as a tool for investigating congruence hypotheses (e.g., consequences of self-other agreement, person-job fit, dyadic similarity). RSA involves the estimation of a nonlinear polynomial regression model and the interpretation of the resulting response surface. However, little is known about how best to conduct RSA when the underlying data are incomplete. In this article, we compare different methods for handling missing data in RSA. This includes different strategies for multiple imputation (MI) and maximum-likelihood (ML) estimation. Specifically, we consider the "just another variable" (JAV) approach to MI and ML, an approach that is in regular use in applications of RSA, and the more novel "substantive-model-compatible" (SMC) approach. In a simulation study, we evaluate the impact of these methods on focal outcomes of RSA, including the accuracy of parameter estimates, the shape of the response surface, and the testing of congruence hypotheses. Our findings suggest that the JAV approach can sometimes distort parameter estimates and conclusions about the shape of the response surface, whereas the SMC approach performs well overall. We illustrate applications of the methods in a worked example with real data and provide recommendations for their application in practice.
响应面分析(RSA)作为一种研究一致性假设的工具(例如,自我-他人一致性的后果、人与工作的匹配、对偶相似性),在心理学研究中越来越受欢迎。RSA 涉及估计非线性多项式回归模型和解释由此产生的响应面。然而,当基础数据不完整时,如何最好地进行 RSA 知之甚少。在本文中,我们比较了 RSA 中处理缺失数据的不同方法。这包括缺失数据的不同多重插补(MI)和最大似然(ML)估计策略。具体来说,我们考虑 MI 和 ML 的“只是另一个变量”(JAV)方法,这是 RSA 应用中常用的方法,以及更新颖的“实质性模型兼容”(SMC)方法。在一项模拟研究中,我们评估了这些方法对 RSA 的焦点结果的影响,包括参数估计的准确性、响应面的形状以及一致性假设的检验。我们的研究结果表明,JAV 方法有时会扭曲参数估计和响应面形状的结论,而 SMC 方法总体表现良好。我们用真实数据的实例说明了这些方法的应用,并为它们在实践中的应用提供了建议。