Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Acc Chem Res. 2021 Apr 6;54(7):1766-1778. doi: 10.1021/acs.accounts.1c00027. Epub 2021 Mar 19.
Nitrogen heterocycles are present in approximately 60% of drugs, with nonplanar heterocycles incorporating stereogenic centers being of considerable interest to the fields of medicinal chemistry, chemical biology, and synthetic methods development. Over the past several years, our laboratory has developed synthetic strategies to access highly functionalized nitrogen heterocycles with multiple stereogenic centers. This approach centers on the efficient preparation of diverse 1,2-dihydropyridines by a Rh-catalyzed C-H bond alkenylation/electrocyclization cascade from readily available α,β-unsaturated imines and alkynes. The often densely substituted 1,2-dihydropyridine products have proven to be extremely versatile intermediates that can be elaborated with high regioselectivity and stereoselectivity, often without purification or even isolation. Protonation or alkylation followed by addition of hydride or carbon nucleophiles affords tetrahydropyridines with divergent regioselectivity and stereoselectivity depending on the reaction conditions. Mechanistic experiments in combination with density functional theory (DFT) calculations provide a rationale for the high level of regiocontrol and stereocontrol that is observed. Further elaboration of the tetrahydropyridines by diastereoselective epoxidation and regioselective ring opening furnishes hydroxy-substituted piperidines. Alternatively, piperidines can be obtained directly from dihydropyridines by catalytic hydrogenation in good yields with high face selectivity.When trimethylsilyl alkynes or -trimethylsilylmethyl imines are employed as starting inputs, the Rh-catalyzed C-H bond alkenylation/electrocyclization cascade provides silyl-substituted dihydropyridines that enable a host of new and useful transformations to different heterocycle classes. Protonation of these products under acidic conditions triggers the loss of the silyl group and the formation of unstabilized azomethine ylides that would be difficult to access by other means. Depending on the location of the silyl group, [3 + 2] cycloaddition of the azomethine ylides with dipolarophiles provides tropane or indolizidine privileged frameworks, which for intramolecular cycloadditions yield complex polycyclic products with up to five contiguous stereogenic centers. When different types of conditions are employed, loss of the silyl group can result in either rearrangement to cyclopropyl-fused pyrrolidines or to aminocyclopentadienes. Mechanistic experiments supported by DFT calculations provide reaction pathways for these unusual rearrangements.The transformations described in this Account are amenable to natural product synthesis and drug discovery applications because of the biological relevance of the structural motifs that are prepared, short reaction sequences that rely on readily available starting inputs, high regiocontrol and stereocontrol, and excellent functional group compatibility. For example, the methods have been applied to efficient asymmetric syntheses of morphinan drugs, including the opioid antagonist (-)-naltrexone, which is extensively used for the treatment of drug abuse.
氮杂环存在于大约 60%的药物中,其中具有立体中心的非平面杂环是药物化学、化学生物学和合成方法发展领域的重要研究对象。在过去的几年中,我们实验室已经开发出了合成具有多个立体中心的高度官能化氮杂环的策略。这种方法的核心是通过 Rh 催化的 C-H 键烯丙基化/电环化级联反应,从易得的α,β-不饱和亚胺和炔烃高效制备各种 1,2-二氢吡啶。通常具有多取代的 1,2-二氢吡啶产物被证明是非常通用的中间体,可以通过高区域选择性和立体选择性进行修饰,通常无需纯化甚至分离。质子化或烷基化后,加入氢化物或碳亲核试剂,根据反应条件可得到具有不同区域选择性和立体选择性的四氢吡啶。结合密度泛函理论(DFT)计算的机理实验为观察到的高区域控制和立体控制提供了依据。通过非对映选择性环氧化和区域选择性开环对四氢吡啶进行进一步修饰,可得到羟基取代的哌啶。或者,通过催化氢化可直接从二氢吡啶中得到哌啶,产率高且具有高面对选择性。当使用三甲基硅基炔烃或三甲基硅基亚胺作为起始原料时,Rh 催化的 C-H 键烯丙基化/电环化级联反应提供了硅取代的二氢吡啶,可实现一系列新的和有用的转化,涉及不同的杂环类别。在酸性条件下对这些产物进行质子化会引发硅烷基的丢失,并形成难以通过其他方式获得的未稳定的亚胺叶立德。根据硅烷基的位置,亚胺叶立德与偶极子的[3+2]环加成提供托烷或吲哚里嗪的优势骨架,对于分子内环加成,可得到多达五个连续立体中心的复杂多环产物。当使用不同类型的条件时,硅烷基的丢失可导致环丙基稠合的吡咯烷或氨基环戊二烯的重排。由 DFT 计算支持的机理实验提供了这些不寻常重排的反应途径。由于所制备的结构基序具有生物学相关性、依赖易得起始原料的短反应序列、高区域和立体控制以及出色的官能团兼容性,因此本研究中描述的转化方法适用于天然产物合成和药物发现应用。例如,这些方法已应用于吗啡类药物的高效不对称合成,包括阿片类拮抗剂(-)纳曲酮,它被广泛用于治疗药物滥用。