Suppr超能文献

解决深度学习处理引起的 CT 图像信号改变:初步的体模研究。

Addressing signal alterations induced in CT images by deep learning processing: A preliminary phantom study.

机构信息

Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche, Florence, Italy; European Laboratory For Non Linear Spectroscopy, Università degli Studi di Firenze, Florence, Italy.

Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Florence, Italy; Scuola di Scienze della Salute Umana, Università degli Studi di Firenze, Florence, Italy.

出版信息

Phys Med. 2021 Mar;83:88-100. doi: 10.1016/j.ejmp.2021.02.022. Epub 2021 Mar 16.

Abstract

PURPOSE

We investigate, by an extensive quality evaluation approach, performances and potential side effects introduced in Computed Tomography (CT) images by Deep Learning (DL) processing.

METHOD

We selected two relevant processing steps, denoise and segmentation, implemented by two Convolutional Neural Networks (CNNs) models based on autoencoder architecture (encoder-decoder and UNet) and trained for the two tasks. In order to limit the number of uncontrolled variables, we designed a phantom containing cylindrical inserts of different sizes, filled with iodinated contrast media. A large CT image dataset was collected at different acquisition settings and two reconstruction algorithms. We characterized the CNNs behavior using metrics from the signal detection theory, radiological and conventional image quality parameters, and finally unconventional radiomic features analysis.

RESULTS

The UNet, due to the deeper architecture complexity, outperformed the shallower encoder-decoder in terms of conventional quality parameters and preserved spatial resolution. We also studied how the CNNs modify the noise texture by using radiomic analysis, identifying sensitive and insensitive features to the denoise processing.

CONCLUSIONS

The proposed evaluation approach proved effective to accurately analyze and quantify the differences in CNNs behavior, in particular with regard to the alterations introduced in the processed images. Our results suggest that even a deeper and more complex network, which achieves good performances, is not necessarily a better network because it can modify texture features in an unwanted way.

摘要

目的

通过广泛的质量评估方法,研究深度学习(DL)处理在计算机断层扫描(CT)图像中引入的性能和潜在副作用。

方法

我们选择了两个相关的处理步骤,即去噪和分割,由两个基于自动编码器架构(编码器-解码器和 UNet)的卷积神经网络(CNN)模型实现,并针对这两个任务进行了训练。为了限制不受控制的变量数量,我们设计了一个包含不同大小圆柱形插件的体模,插件中填充有碘造影剂。使用不同的采集设置和两种重建算法,我们收集了大量的 CT 图像数据集。我们使用信号检测理论、放射学和常规图像质量参数以及非常规的放射组学特征分析来描述 CNN 的行为。

结果

由于更深的架构复杂性,UNet 在常规质量参数方面优于较浅的编码器-解码器,并保留了空间分辨率。我们还通过放射组学分析研究了 CNN 如何改变噪声纹理,确定了对去噪处理敏感和不敏感的特征。

结论

所提出的评估方法被证明可以有效地准确分析和量化 CNN 行为的差异,特别是在处理图像中引入的改变方面。我们的结果表明,即使是性能良好的更深、更复杂的网络也不一定是更好的网络,因为它可能以不期望的方式修改纹理特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验