School of Chemistry, Australian Laboratory for Emerging Contaminants, University of Melbourne, Victoria, 3010, Australia.
MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK.
Environ Pollut. 2021 Jun 1;278:116839. doi: 10.1016/j.envpol.2021.116839. Epub 2021 Mar 8.
An industrial warehouse illegally storing a large quantity of unknown chemical and industrial waste ignited in an urban area in Melbourne, Australia. The multiday fire required firefighters to use large amounts of fluorine-free foam that carried contaminated firewater runoff into an adjacent freshwater creek. In this study, the occurrence and fate of 42 per- and polyfluoroalkyl substances (PFASs) was determined from triplicate surface water samples (n = 45) from five locations (upstream, point-source, downstream; 8 km) over three sampling campaigns from 2018 to 2020. Out of the 42 target PFASs, perfluorocarboxylates (PFCAs: C4-C14), perfluoroalkane sulfonates (PFSAs: C4-C10), and perfluoroalkyl acid precursors (e.g. 6:2 fluorotelomer sulfonate (6:2 FTSA)) were ubiquitously detected in surface waters (concentration ranges: <0.7-3000 ng/L). A significant difference in ΣPFAS concentration was observed at the point-source (mean 5500 ng/L; 95% CI: 4800, 6300) relative to upstream sites (mean 100 ng/L; 95% CI: 90, 110; p ≤ 0.001). The point-source ΣPFAS concentration decreased from 5500 ± 1200 ng/L to 960 ± 42 ng/L (-83%) after two months and to 430 ± 15 ng/L (-98%) two years later. 6:2 FTSA and perfluorooctanesulfonate (PFOS) dominated in surface water, representing on average 31% and 20% of the ΣPFAS, respectively. Emerging PFASs including a cyclic perfluoroalkanesulfonate (PFECHS) and a C4 perfluoroalkane sulfonamide (FBSA) were repeatedly present in surface water (concentration ranges <0.3-77 ng/L). According to the updated Australian PFAS guidelines for ecological conservation, the water samples collected at the time of monitoring may have posed a short-term risk to aquatic organisms in regard to PFOS levels. These results illustrate that acute high dose exposure to PFASs can result from industrial fires at sites storing or stockpiling PFAS-based waste products. Continued monitoring will be crucial to evaluate potential long-term risk to wildlife in the region.
一个工业仓库在澳大利亚墨尔本的一个城区非法储存了大量未知的化学物质和工业废物,引发大火。这场持续多日的大火需要消防队员使用大量无氟泡沫,这些泡沫将受污染的消防水排入附近的淡水溪中。在这项研究中,从 2018 年至 2020 年的三次采样活动中,在五个地点(上游、点源、下游;8 公里)采集了三份地表水样本(n=45),以确定 42 种全氟和多氟烷基物质(PFASs)的出现和命运。在所检测的 42 种目标 PFASs 中,全氟羧酸(PFCAs:C4-C14)、全氟烷磺酸(PFSAs:C4-C10)和全氟烷基酸前体(如 6:2 氟代telomer 磺酸盐(6:2 FTSA))普遍存在于地表水中(浓度范围:<0.7-3000ng/L)。与上游地点(平均值 100ng/L;95%CI:90,110;p≤0.001)相比,点源处的ΣPFAS 浓度(平均值 5500ng/L;95%CI:4800,6300)差异显著。两个月后,点源处的ΣPFAS 浓度从 5500±1200ng/L 降至 960±42ng/L(-83%),两年后降至 430±15ng/L(-98%)。6:2 FTSA 和全氟辛烷磺酸(PFOS)在地表水中占主导地位,分别占ΣPFAS 的平均 31%和 20%。新兴的 PFAS 包括环状全氟烷磺酸(PFECHS)和 C4 全氟烷磺酰胺(FBSA),它们在地表水中反复出现(浓度范围<0.3-77ng/L)。根据澳大利亚更新的生态保护 PFAS 指南,在监测时采集的水样中,PFOS 水平可能对水生生物构成短期风险。这些结果表明,储存或储存 PFAS 基废物的地点发生工业火灾,可能会导致 PFAS 的急性高剂量暴露。需要继续监测,以评估该地区野生动物的潜在长期风险。