Suppr超能文献

一种计算经随机死时间修正的非齐次泊松点过程区间分布的数值方法。

A numerical method for computing interval distributions for an inhomogeneous Poisson point process modified by random dead times.

机构信息

Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118, Magdeburg, Germany.

出版信息

Biol Cybern. 2021 Apr;115(2):177-190. doi: 10.1007/s00422-021-00868-8. Epub 2021 Mar 19.

Abstract

The inhomogeneous Poisson point process is a common model for time series of discrete, stochastic events. When an event from a point process is detected, it may trigger a random dead time in the detector, during which subsequent events will fail to be detected. It can be difficult or impossible to obtain a closed-form expression for the distribution of intervals between detections, even when the rate function (often referred to as the intensity function) and the dead-time distribution are given. Here, a method is presented to numerically compute the interval distribution expected for any arbitrary inhomogeneous Poisson point process modified by dead times drawn from any arbitrary distribution. In neuroscience, such a point process is used to model trains of neuronal spikes triggered by the detection of excitatory events while the neuron is not refractory. The assumptions of the method are that the process is observed over a finite observation window and that the detector is not in a dead state at the start of the observation window. Simulations are used to verify the method for several example point processes. The method should be useful for modeling and understanding the relationships between the rate functions and interval distributions of the event and detection processes, and how these relationships depend on the dead-time distribution.

摘要

非均匀泊松点过程是离散随机事件时间序列的常用模型。当点过程中的事件被检测到时,它可能会触发探测器中的随机死区时间,在此期间后续事件将无法被检测到。即使给出了率函数(通常称为强度函数)和死区时间分布,也很难或不可能获得检测间隔分布的封闭形式表达式。本文提出了一种方法,可以针对任何通过从任意分布中抽取的死区时间修改的非均匀泊松点过程,数值计算出所期望的间隔分布。在神经科学中,这种点过程用于模拟神经元在不应期时因检测到兴奋性事件而引发的神经元尖峰序列。该方法的假设是,过程是在有限的观测窗口中观测的,并且在观测窗口开始时探测器不在死区状态。使用模拟来验证几种示例点过程的方法。该方法应该有助于对事件和检测过程的率函数和间隔分布之间的关系以及这些关系如何取决于死区时间分布进行建模和理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6da/8036215/ee1273db1d6b/422_2021_868_Fig1_HTML.jpg

相似文献

1
A numerical method for computing interval distributions for an inhomogeneous Poisson point process modified by random dead times.
Biol Cybern. 2021 Apr;115(2):177-190. doi: 10.1007/s00422-021-00868-8. Epub 2021 Mar 19.
2
Sampling properties of the spectrum and coherency of sequences of action potentials.
Neural Comput. 2001 Apr;13(4):717-49. doi: 10.1162/089976601300014312.
6
Gaussian process approach to spiking neurons for inhomogeneous Poisson inputs.
Neural Comput. 2001 Dec;13(12):2763-97. doi: 10.1162/089976601317098529.
7
Distribution of interspike intervals estimated from multiple spike trains observed in a short time window.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 1):011910. doi: 10.1103/PhysRevE.83.011910. Epub 2011 Jan 18.
8
Inhomogeneous Poisson process rate function inference from dead-time limited observations.
J Opt Soc Am A Opt Image Sci Vis. 2017 May 1;34(5):770-782. doi: 10.1364/JOSAA.34.000770.
10
Rate limitations of unitary event analysis.
Neural Comput. 2000 Sep;12(9):2063-82. doi: 10.1162/089976600300015060.

本文引用的文献

1
A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
Hear Res. 2018 Jun;363:1-27. doi: 10.1016/j.heares.2017.09.005. Epub 2017 Sep 15.
2
Inhomogeneous Poisson process rate function inference from dead-time limited observations.
J Opt Soc Am A Opt Image Sci Vis. 2017 May 1;34(5):770-782. doi: 10.1364/JOSAA.34.000770.
3
Dead time effects in non-line-of-sight ultraviolet communications.
Opt Express. 2015 Jun 15;23(12):15748-61. doi: 10.1364/OE.23.015748.
5
Nonequilibrium dynamics of stochastic point processes with refractoriness.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021129. doi: 10.1103/PhysRevE.82.021129. Epub 2010 Aug 31.
7
Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.
J Neurophysiol. 2009 Jun;101(6):3169-91. doi: 10.1152/jn.90779.2008. Epub 2009 Apr 8.
8
Conditional probability analyses of the spike activity of single neurons.
Biophys J. 1967 Nov;7(6):759-77. doi: 10.1016/S0006-3495(67)86621-9. Epub 2008 Dec 31.
9
Measurement of variability dynamics in cortical spike trains.
J Neurosci Methods. 2008 Apr 30;169(2):374-90. doi: 10.1016/j.jneumeth.2007.10.013. Epub 2007 Oct 30.
10
Spontaneous activity of auditory-nerve fibers: insights into stochastic processes at ribbon synapses.
J Neurosci. 2007 Aug 1;27(31):8457-74. doi: 10.1523/JNEUROSCI.1512-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验