Peterson Adam J, Heil Peter
Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.
Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
Hear Res. 2018 Jun;363:1-27. doi: 10.1016/j.heares.2017.09.005. Epub 2017 Sep 15.
The initial neural encoding of acoustic information occurs by means of spikes in primary auditory afferents. Each mammalian primary auditory afferent (type-I auditory-nerve fiber; ANF) is associated with only one ribbon synapse in one receptor cell (inner hair cell; IHC). The properties of ANF spike trains therefore provide an indirect view of the operation of individual IHC synapses. We showed previously that a point process model of presynaptic vesicle pool depletion and deterministic exponential replenishment, combined with short postsynaptic neural refractoriness, accounts for the interspike interval (ISI) distributions, serial ISI correlations, and spike-count statistics of a population of cat-ANF spontaneous spike trains. Here, we demonstrate that this previous synapse model produces unrealistic properties when spike rates are high and show that this problem can be resolved if the replenishment of each release site is stochastic and independent. We assume that the depletion probability varies between synapses to produce differences in spontaneous rate and that the other model parameters are constant across synapses. We find that this model fits best with only four release sites per IHC synapse, a mean replenishment time of 17 ms, and absolute and mean relative refractory periods of 0.6 ms each. This model accounts for ANF spontaneous spike timing better than two influential, comprehensive models of the auditory periphery. It also reproduces ISI distributions from spontaneous and steady-state driven activity from other studies and other mammalian species. Adding fractal noise to the rate of depletion of each release site can yield long-range correlations as typically observed in long spike trains. We also examine two model variants having more complex vesicle cycles, but neither variant yields a markedly improved fit or a different estimate of the number of release sites. In addition, we examine a model variant having both short and long relative refractory components and find that it cannot account for all aspects of the data. These model results will be beneficial for understanding ribbon synapses and ANF responses to acoustic stimulation.
声学信息的初始神经编码是通过初级听觉传入神经的尖峰信号来实现的。每根哺乳动物的初级听觉传入神经(I型听觉神经纤维;ANF)仅与一个受体细胞(内毛细胞;IHC)中的一个带状突触相关联。因此,ANF尖峰序列的特性为单个IHC突触的运作提供了一个间接的视角。我们之前表明,突触前囊泡池耗尽和确定性指数补充的点过程模型,结合突触后神经的短不应期,能够解释猫ANF自发尖峰序列群体的峰峰间隔(ISI)分布、序列ISI相关性以及尖峰计数统计。在此,我们证明当尖峰率较高时,这个先前的突触模型会产生不切实际的特性,并表明如果每个释放位点的补充是随机且独立的,这个问题就能得到解决。我们假设耗尽概率在突触之间有所不同,以产生自发率的差异,并且其他模型参数在突触之间是恒定的。我们发现,该模型最适合每个IHC突触仅有四个释放位点、平均补充时间为17毫秒,以及绝对和平均相对不应期均为0.6毫秒的情况。该模型比另外两个有影响力的、全面的听觉外周模型能更好地解释ANF自发尖峰时间。它还能重现其他研究和其他哺乳动物物种的自发和稳态驱动活动的ISI分布。在每个释放位点的耗尽率中添加分形噪声可以产生长程相关性,这在长尖峰序列中通常可以观察到。我们还研究了两个具有更复杂囊泡循环的模型变体,但这两个变体都没有显著改善拟合效果或对释放位点数量给出不同的估计。此外,我们研究了一个具有短和长相对不应期成分的模型变体,发现它无法解释数据的所有方面。这些模型结果将有助于理解带状突触以及ANF对声学刺激的反应。